# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Common data processing utilities that are used in a typical object detection data pipeline. """ import torch from detectron2.structures import ( Boxes, BoxMode, Instances, ) def transform_instance_annotations( annotation, transforms, image_size, *, keypoint_hflip_indices=None ): """ Apply transforms to box, segmentation and keypoints annotations of a single instance. It will use `transforms.apply_box` for the box, and `transforms.apply_coords` for segmentation polygons & keypoints. If you need anything more specially designed for each data structure, you'll need to implement your own version of this function or the transforms. Args: annotation (dict): dict of instance annotations for a single instance. It will be modified in-place. transforms (TransformList): image_size (tuple): the height, width of the transformed image keypoint_hflip_indices (ndarray[int]): see `create_keypoint_hflip_indices`. Returns: dict: the same input dict with fields "bbox", "segmentation", "keypoints" transformed according to `transforms`. The "bbox_mode" field will be set to XYXY_ABS. """ bbox = BoxMode.convert(annotation["bbox"], annotation["bbox_mode"], BoxMode.XYXY_ABS) # Note that bbox is 1d (per-instance bounding box) annotation["bbox"] = transforms.apply_box([bbox])[0] annotation["bbox_mode"] = BoxMode.XYXY_ABS if "attributes" in annotation: annotation["attributes"] = annotation["attributes"] return annotation def annotations_to_instances(annos, image_size, mask_format="polygon"): """ Create an :class:`Instances` object used by the models, from instance annotations in the dataset dict. Args: annos (list[dict]): a list of instance annotations in one image, each element for one instance. image_size (tuple): height, width Returns: Instances: It will contain fields "gt_boxes", "gt_classes", "gt_masks", "gt_keypoints", if they can be obtained from `annos`. This is the format that builtin models expect. """ boxes = [BoxMode.convert(obj["bbox"], obj["bbox_mode"], BoxMode.XYXY_ABS) for obj in annos] target = Instances(image_size) boxes = target.gt_boxes = Boxes(boxes) boxes.clip(image_size) classes = [obj["category_id"] for obj in annos] classes = torch.tensor(classes, dtype=torch.int64) target.gt_classes = classes # attributes = [obj["attributes"] for obj in annos] attributes = [] for obj in annos: if "attributes" in obj.keys(): attributes.append(obj["attributes"]) else: attributes.append([-1]*16) attributes = torch.tensor(attributes, dtype=torch.int64) target.gt_attributes = attributes return target