from evaluation import evalrank, evalrank2,evalrank3,evalrank_vse,evalrank_maxpool,evalrank_f_c,evalrank_avgpool,evalrank_f_c2 import numpy as np from transformers import BertTokenizer import os os.environ["CUDA_VISIBLE_DEVICES"] = "5" # os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE' #f30k数据集和coco数据集上实验 evalrank_f_c("../SCAN-master/data/f30k_precomp","f30k") # evalrank_f_c("../SCAN-master/data/coco_precomp","coco") #evalrank_f_c2("../SCAN-master/data/coco_precomp","f30k") # evalrank_f_c2("../SCAN-master/data/f30k_precomp","coco") #消融实验 #evalrank_vse("./runs/bert_adam_bcan_gpo_vseinfty_vse_data_3045_lr2_vse_gpo/model_best.pth.tar", "../SCAN-master/data/", "test") #evalrank("./runs/bert_adam_bcan_gpo_vseinfty_union_2035/model_best.pth.tar", "../SCAN-master/data/", "test") #池化方式对比实验 #evalrank_avgpool("./runs/bert_adam_bcan_gpo_vseinfty_bcan/model_best.pth.tar", "../SCAN-master/data/", "test") #evalrank_maxpool("./runs/bert_adam_bcan_gpo_vseinfty_bcan/model_best.pth.tar", "../SCAN-master/data/", "test")