Graduation_Project/LHL/data.py

234 lines
8.5 KiB
Python

from queue import Queue
from threading import Thread
import h5py
import nltk
import torch
import torch.utils.data as data
import os
import numpy as np
import json
from torch.utils.data import DataLoader
from prefetch_generator import BackgroundGenerator
from transformers import BertTokenizer
class DataLoaderX(DataLoader):
def __iter__(self):
return BackgroundGenerator(super().__iter__())
class PrecompShuffleDataset(data.Dataset):
"""
Load precomputed captions and image features
Possible options: f30k_precomp, coco_precomp
"""
def __init__(self, data_path, data_split, vocab):
print('word txt encoder')
self.vocab = vocab
loc = data_path + '/'
self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
# Captions
self.captions = []
with open(loc+'%s_caps.txt' % data_split, 'rb') as f:
for line in f:
self.captions.append(line.strip().decode('utf-8'))
self.data_split = data_split
# if self.data_split == 'test':
# self.bbox = np.load(loc + '%s_ims_bbx.npy' % data_split)
# self.sizes = np.load(loc + '%s_ims_size.npy' % data_split, allow_pickle=True)
# self.tags = []
# with open(loc + '%s_tags_new.txt' % data_split, 'rb') as f:
# for line in f:
# self.tags.append(line.strip().decode('utf-8'))
# Image features
print('loading npy')
self.images = np.load(loc+'%s_ims.npy' % data_split, mmap_mode = 'r')
#print(len(self.images), len(self.captions))
#self.images = np.load(loc + '%s_ims.npy' % data_split)
print('done load npy')
self.length = len(self.captions)
# self.length = 10000
# rkiros data has redundancy in images, we divide by 5, 10crop doesn't
if self.images.shape[0] != self.length:
self.im_div = 5
else:
self.im_div = 1
# the development set for coco is large and so validation would be slow
if data_split == 'shuffle_dev':
self.length = 20000
self.im_div = 4
if data_split == 'shuffle_train':
#self.length = 20000
self.im_div = 20
def __getitem__(self, index):
# handle the image redundancy
img_id = int(index/self.im_div)
image = torch.Tensor(self.images[img_id])
caption = self.captions[index]
vocab = self.vocab
caption = caption.replace('.', '.[SEP]')[:-6]
caption = self.tokenizer.encode(caption)
target = torch.Tensor(caption)
# Convert caption (string) to word ids.
# tokens = nltk.tokenize.word_tokenize(
# caption.encode('utf-8').decode('utf-8'))
# caption = []
# caption.append(vocab('<start>'))
# caption.extend([vocab(str(token).lower()) for token in tokens])
# caption.append(vocab('<end>'))
# # assert(len(caption) - 2== len(new_tags))
# target = torch.Tensor(caption)
# # new_tags = torch.Tensor(new_tags)
return image, target, index, img_id
def __len__(self):
return self.length
class PrecompDataset(data.Dataset):
"""
Load precomputed captions and image features
Possible options: f30k_precomp, coco_precomp
"""
def __init__(self, data_path, data_split, vocab):
print('word txt encoder')
self.vocab = vocab
loc = data_path + '/'
self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
# Captions
self.captions = []
with open(loc+'%s_caps.txt' % data_split, 'rb') as f:
for line in f:
self.captions.append(line.strip().decode('utf-8'))
self.data_split = data_split
# if self.data_split == 'test':
# self.bbox = np.load(loc + '%s_ims_bbx.npy' % data_split)
# self.sizes = np.load(loc + '%s_ims_size.npy' % data_split, allow_pickle=True)
# self.tags = []
# with open(loc + '%s_tags_new.txt' % data_split, 'rb') as f:
# for line in f:
# self.tags.append(line.strip().decode('utf-8'))
# Image features
print('loading npy')
self.images = np.load(loc+'%s_ims.npy' % data_split, mmap_mode = 'r')
#self.images = np.load(loc + '%s_ims.npy' % data_split)
print('done load npy')
self.length = len(self.captions)
# self.length = 10000
# rkiros data has redundancy in images, we divide by 5, 10crop doesn't
if self.images.shape[0] != self.length:
self.im_div = 5
else:
self.im_div = 1
# the development set for coco is large and so validation would be slow
if data_split == 'dev':
self.length = 5000
def __getitem__(self, index):
# handle the image redundancy
img_id = int(index/self.im_div)
image = torch.Tensor(self.images[img_id])
caption = self.captions[index]
vocab = self.vocab
caption = self.tokenizer.encode(caption)
target = torch.Tensor(caption)
# Convert caption (string) to word ids.
# tokens = nltk.tokenize.word_tokenize(
# caption.encode('utf-8').decode('utf-8'))
# caption = []
# caption.append(vocab('<start>'))
# caption.extend([vocab(str(token).lower()) for token in tokens])
# caption.append(vocab('<end>'))
# # assert(len(caption) - 2== len(new_tags))
# target = torch.Tensor(caption)
# # new_tags = torch.Tensor(new_tags)
return image, target, index, img_id
def __len__(self):
return self.length
def collate_fn(data):
"""Build mini-batch tensors from a list of (image, caption) tuples.
Args:
data: list of (image, caption) tuple.
- image: torch tensor of shape (3, 256, 256).
- caption: torch tensor of shape (?); variable length.
Returns:
images: torch tensor of shape (batch_size, 3, 256, 256).
targets: torch tensor of shape (batch_size, padded_length).
lengths: list; valid length for each padded caption.
"""
# Sort a data list by caption length
data.sort(key=lambda x: len(x[1]), reverse=True)
images, captions, ids, img_ids = zip(*data)
# Merge images (convert tuple of 3D tensor to 4D tensor)
images = torch.stack(images, 0)
# Merget captions (convert tuple of 1D tensor to 2D tensor)
lengths = torch.LongTensor([len(cap) for cap in captions])
#print(lengths.dtype, lengths.shape)
targets = torch.zeros(len(captions), max(lengths)).long()
for i, cap in enumerate(captions):
end = lengths[i]
targets[i, :end] = cap[:end]
img_lengths = [len(image) for image in images]
img_lengths = torch.Tensor(img_lengths)
return images, img_lengths, targets, lengths, ids
def get_precomp_loader(data_path, data_split, vocab, opt, batch_size=100,
shuffle=True, num_workers=0):
"""Returns torch.utils.data.DataLoader for custom coco dataset."""
dset = PrecompDataset(data_path, data_split, vocab)
#dset = PrecompShuffleDataset(data_path, data_split, vocab)
# train_sampler = torch.utils.data.distributed.DistributedSampler(dset)
# if data_split == 'train':
# data_loader = DataLoader(dataset=dset, batch_size=batch_size, shuffle=False, num_workers=num_workers, pin_memory=True, collate_fn=collate_fn, sampler=train_sampler)
# else:
print(num_workers)
data_loader = DataLoaderX(dataset=dset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=True, collate_fn=collate_fn)
return data_loader
def get_loaders(data_name, vocab, batch_size, workers, opt):
dpath = os.path.join(opt.data_path, data_name)
train_loader = get_precomp_loader(dpath, 'train', vocab, opt,
batch_size, True, workers)
val_loader = get_precomp_loader(dpath, 'dev', vocab, opt,
batch_size, False, workers)
# train_loader = get_precomp_loader(dpath, 'shuffle_train', vocab, opt,
# batch_size, True, workers)
# val_loader = get_precomp_loader(dpath, 'shuffle_dev', vocab, opt,
# batch_size, False, workers)
return train_loader, val_loader
def get_test_loader(split_name, data_name, vocab, batch_size,
workers, opt):
dpath = os.path.join(opt.data_path, data_name)
test_loader = get_precomp_loader(dpath, split_name, vocab, opt,
batch_size, False, workers)
return test_loader