Graduation_Project/LHL/lib/modules/resnet.py

311 lines
11 KiB
Python

import os
import torch
import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo
import logging
logger = logging.getLogger(__name__)
__all__ = ['ResNet', 'resnet50', 'resnet101', 'resnet152']
model_urls = {
'resnet50': 'https://s3.amazonaws.com/pytorch/models/resnet50-19c8e357.pth',
'resnet101': 'https://s3.amazonaws.com/pytorch/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://s3.amazonaws.com/pytorch/models/resnet152-b121ed2d.pth',
}
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) # change
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, # change
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, width_mult, num_classes=1000):
self.inplanes = 64 * width_mult
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=0, ceil_mode=True) # change
self.layer1 = self._make_layer(block, 64 * width_mult, layers[0])
self.layer2 = self._make_layer(block, 128 * width_mult, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256 * width_mult, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512 * width_mult, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7)
self.fc = nn.Linear(512 * block.expansion * width_mult, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def resnet50(pretrained=False, width_mult=1):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 6, 3], width_mult)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
return model
def resnet101(pretrained=False, width_mult=1):
"""Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 23, 3], width_mult)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
return model
def resnet152(pretrained=False, width_mult=1):
"""Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 8, 36, 3], width_mult)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
return model
class ResnetFeatureExtractor(nn.Module):
def __init__(self, backbone_source, weights_path, pooling_size=7, fixed_blocks=2):
super(ResnetFeatureExtractor, self).__init__()
self.backbone_source = backbone_source
self.weights_path = weights_path
self.pooling_size = pooling_size
self.fixed_blocks = fixed_blocks
if 'detector' in self.backbone_source:
self.resnet = resnet101()
elif self.backbone_source == 'imagenet':
self.resnet = resnet101(pretrained=True)
elif self.backbone_source == 'imagenet_res50':
self.resnet = resnet50(pretrained=True)
elif self.backbone_source == 'imagenet_res152':
self.resnet = resnet152(pretrained=True)
elif self.backbone_source == 'imagenet_resnext':
self.resnet = torch.hub.load('pytorch/vision:v0.4.2', 'resnext101_32x8d', pretrained=True)
elif 'wsl' in self.backbone_source:
self.resnet = torch.hub.load('facebookresearch/WSL-Images', 'resnext101_32x8d_wsl')
else:
raise ValueError('Unknown backbone source {}'.format(self.backbone_source))
self._init_modules()
def _init_modules(self):
# Build resnet.
self.base = nn.Sequential(self.resnet.conv1, self.resnet.bn1, self.resnet.relu,
self.resnet.maxpool, self.resnet.layer1, self.resnet.layer2, self.resnet.layer3)
self.top = nn.Sequential(self.resnet.layer4)
if self.weights_path != '':
if 'detector' in self.backbone_source:
if os.path.exists(self.weights_path):
logger.info(
'Loading pretrained backbone weights from {} for backbone source {}'.format(self.weights_path,
self.backbone_source))
backbone_ckpt = torch.load(self.weights_path)
self.base.load_state_dict(backbone_ckpt['base'])
self.top.load_state_dict(backbone_ckpt['top'])
else:
raise ValueError('Could not find weights for backbone CNN at {}'.format(self.weights_path))
else:
logger.info('Did not load external checkpoints')
self.unfreeze_base()
def set_fixed_blocks(self, fixed_blocks):
self.fixed_blocks = fixed_blocks
def get_fixed_blocks(self):
return self.fixed_blocks
def unfreeze_base(self):
assert (0 <= self.fixed_blocks < 4)
if self.fixed_blocks == 3:
for p in self.base[6].parameters(): p.requires_grad = False
for p in self.base[5].parameters(): p.requires_grad = False
for p in self.base[4].parameters(): p.requires_grad = False
for p in self.base[0].parameters(): p.requires_grad = False
for p in self.base[1].parameters(): p.requires_grad = False
if self.fixed_blocks == 2:
for p in self.base[6].parameters(): p.requires_grad = True
for p in self.base[5].parameters(): p.requires_grad = False
for p in self.base[4].parameters(): p.requires_grad = False
for p in self.base[0].parameters(): p.requires_grad = False
for p in self.base[1].parameters(): p.requires_grad = False
if self.fixed_blocks == 1:
for p in self.base[6].parameters(): p.requires_grad = True
for p in self.base[5].parameters(): p.requires_grad = True
for p in self.base[4].parameters(): p.requires_grad = False
for p in self.base[0].parameters(): p.requires_grad = False
for p in self.base[1].parameters(): p.requires_grad = False
if self.fixed_blocks == 0:
for p in self.base[6].parameters(): p.requires_grad = True
for p in self.base[5].parameters(): p.requires_grad = True
for p in self.base[4].parameters(): p.requires_grad = True
for p in self.base[0].parameters(): p.requires_grad = True
for p in self.base[1].parameters(): p.requires_grad = True
logger.info('Resnet backbone now has fixed blocks {}'.format(self.fixed_blocks))
def freeze_base(self):
for p in self.base.parameters():
p.requires_grad = False
def train(self, mode=True):
# Override train so that the training mode is set as we want (BN does not update the running stats)
nn.Module.train(self, mode)
if mode:
# fix all bn layers
def set_bn_eval(m):
classname = m.__class__.__name__
if classname.find('BatchNorm') != -1:
m.eval()
self.base.apply(set_bn_eval)
self.top.apply(set_bn_eval)
def _head_to_tail(self, pool5):
fc7 = self.top(pool5).mean(3).mean(2)
return fc7
def forward(self, im_data):
b_s = im_data.size(0)
base_feat = self.base(im_data)
top_feat = self.top(base_feat)
features = top_feat.view(b_s, top_feat.size(1), -1).permute(0, 2, 1)
return features
if __name__ == '__main__':
import numpy as np
def count_params(model):
model_parameters = model.parameters()
params = sum([np.prod(p.size()) for p in model_parameters])
return params
model = resnet50(pretrained=False, width_mult=1)
num_params = count_params(model)