Graduation_Project/LHL/models/bua/rpn_outputs.py

404 lines
18 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import itertools
import logging
import numpy as np
import torch
import torch.nn.functional as F
from fvcore.nn import smooth_l1_loss
from detectron2.layers import cat
from detectron2.structures import Instances, pairwise_iou
from detectron2.utils.events import get_event_storage
from detectron2.modeling.sampling import subsample_labels
from .box_regression import BUABoxes
from .layers.nms import batched_nms
def find_top_bua_rpn_proposals(
proposals,
pred_objectness_logits,
images,
nms_thresh,
pre_nms_topk,
post_nms_topk,
min_box_side_len,
training,
):
"""
For each feature map, select the `pre_nms_topk` highest scoring proposals,
apply NMS, clip proposals, and remove small boxes. Return the `post_nms_topk`
highest scoring proposals among all the feature maps if `training` is True,
otherwise, returns the highest `post_nms_topk` scoring proposals for each
feature map.
Args:
proposals (list[Tensor]): A list of L tensors. Tensor i has shape (N, Hi*Wi*A, 4).
All proposal predictions on the feature maps.
pred_objectness_logits (list[Tensor]): A list of L tensors. Tensor i has shape (N, Hi*Wi*A).
images (ImageList): Input images as an :class:`ImageList`.
nms_thresh (float): IoU threshold to use for NMS
pre_nms_topk (int): number of top k scoring proposals to keep before applying NMS.
When RPN is run on multiple feature maps (as in FPN) this number is per
feature map.
post_nms_topk (int): number of top k scoring proposals to keep after applying NMS.
When RPN is run on multiple feature maps (as in FPN) this number is total,
over all feature maps.
min_box_side_len (float): minimum proposal box side length in pixels (absolute units
wrt input images).
training (bool): True if proposals are to be used in training, otherwise False.
This arg exists only to support a legacy bug; look for the "NB: Legacy bug ..."
comment.
Returns:
proposals (list[Instances]): list of N Instances. The i-th Instances
stores post_nms_topk object proposals for image i.
"""
image_sizes = images.image_sizes # in (h, w) order
image_scales = images.image_scales
device = proposals[0].device
# 1. Concat all levels together
all_scores = []
all_proposals = []
level_ids = []
for level_id, proposals_i, logits_i in zip(
itertools.count(), proposals, pred_objectness_logits
):
Hi_Wi_A = logits_i.shape[1]
all_proposals.append(proposals_i)
all_scores.append(logits_i)
level_ids.append(torch.full((Hi_Wi_A,), level_id, dtype=torch.int64, device=device))
all_scores = cat(all_scores, dim=1)
all_proposals = cat(all_proposals, dim=1)
level_ids = cat(level_ids, dim=0)
# 2. For each image, run a choose pre_nms_topk proposal ,per-level NMS, and choose post_nms_topk results.
results = []
for n, image_size in enumerate(image_sizes):
boxes = BUABoxes(all_proposals[n])
scores_per_img = all_scores[n]
boxes.clip(image_size)
keep = boxes.filter_boxes()
boxes = boxes[keep]
scores_per_img = scores_per_img[keep]
lvl = level_ids[keep]
# filter empty boxes
keep = boxes.nonempty(threshold=min_box_side_len*image_scales[n])
if keep.sum().item() != len(boxes):
boxes, scores_per_img, lvl = boxes[keep], scores_per_img[keep], lvl[keep]
# choose pre_nms_topk proposal
Hi_Wi_A = scores_per_img.shape[0]
num_proposals_i = min(pre_nms_topk, Hi_Wi_A)
scores_per_img, idx = scores_per_img.sort(descending=True, dim=0)
topk_scores_i = scores_per_img[:num_proposals_i]
topk_idx = idx[:num_proposals_i]
topk_boxes_i = boxes[topk_idx, :]
lvl_i = lvl[topk_idx]
keep = batched_nms(topk_boxes_i.tensor, topk_scores_i, lvl_i, nms_thresh)
# In Detectron1, there was different behavior during training vs. testing.
# (https://github.com/facebookresearch/Detectron/issues/459)
# During training, topk is over the proposals from *all* images in the training batch.
# During testing, it is over the proposals for each image separately.
# As a result, the training behavior becomes batch-dependent,
# and the configuration "POST_NMS_TOPK_TRAIN" end up relying on the batch size.
# This bug is addressed in Detectron2 to make the behavior independent of batch size.
keep = keep[:post_nms_topk]
res = Instances(image_size)
res.proposal_boxes = topk_boxes_i[keep]
res.objectness_logits = topk_scores_i[keep]
results.append(res)
return results
class BUARPNOutputs(object):
def __init__(
self,
box2box_transform,
anchor_matcher,
batch_size_per_image,
positive_fraction,
images,
pred_objectness_logits,
pred_anchor_deltas,
anchors,
boundary_threshold=0,
gt_boxes=None,
smooth_l1_beta=0.0,
):
"""
Args:
box2box_transform (Box2BoxTransform): :class:`Box2BoxTransform` instance for
anchor-proposal transformations.
anchor_matcher (Matcher): :class:`Matcher` instance for matching anchors to
ground-truth boxes; used to determine training labels.
batch_size_per_image (int): number of proposals to sample when training
positive_fraction (float): target fraction of sampled proposals that should be positive
images (ImageList): :class:`ImageList` instance representing N input images
pred_objectness_logits (list[Tensor]): A list of L elements.
Element i is a tensor of shape (N, A, Hi, Wi) representing
the predicted objectness logits for anchors.
pred_anchor_deltas (list[Tensor]): A list of L elements. Element i is a tensor of shape
(N, A*4, Hi, Wi) representing the predicted "deltas" used to transform anchors
to proposals.
anchors (list[list[Boxes]]): A list of N elements. Each element is a list of L
Boxes. The Boxes at (n, l) stores the entire anchor array for feature map l in image
n (i.e. the cell anchors repeated over all locations in feature map (n, l)).
boundary_threshold (int): if >= 0, then anchors that extend beyond the image
boundary by more than boundary_thresh are not used in training. Set to a very large
number or < 0 to disable this behavior. Only needed in training.
gt_boxes (list[Boxes], optional): A list of N elements. Element i a Boxes storing
the ground-truth ("gt") boxes for image i.
smooth_l1_beta (float): The transition point between L1 and L2 loss in
the smooth L1 loss function. When set to 0, the loss becomes L1. When
set to +inf, the loss becomes constant 0.
"""
self.box2box_transform = box2box_transform
self.anchor_matcher = anchor_matcher
self.batch_size_per_image = batch_size_per_image
self.positive_fraction = positive_fraction
self.pred_objectness_logits = pred_objectness_logits
self.pred_anchor_deltas = pred_anchor_deltas
self.anchors = anchors
self.gt_boxes = gt_boxes
self.num_feature_maps = len(pred_objectness_logits)
self.num_images = len(images)
self.image_sizes = images.image_sizes
self.boundary_threshold = boundary_threshold
self.smooth_l1_beta = smooth_l1_beta
def _get_ground_truth(self):
"""
Returns:
gt_objectness_logits: list of N tensors. Tensor i is a vector whose length is the
total number of anchors in image i (i.e., len(anchors[i])). Label values are
in {-1, 0, 1}, with meanings: -1 = ignore; 0 = negative class; 1 = positive class.
gt_anchor_deltas: list of N tensors. Tensor i has shape (len(anchors[i]), 4).
"""
gt_objectness_logits = []
gt_anchor_deltas = []
# Concatenate anchors from all feature maps into a single Boxes per image
anchors = [BUABoxes.cat(anchors_i) for anchors_i in self.anchors]
for image_size_i, anchors_i, gt_boxes_i in zip(self.image_sizes, anchors, self.gt_boxes):
"""
image_size_i: (h, w) for the i-th image
anchors_i: anchors for i-th image
gt_boxes_i: ground-truth boxes for i-th image
"""
match_quality_matrix = pairwise_iou(gt_boxes_i, anchors_i)
matched_idxs, gt_objectness_logits_i = self.anchor_matcher(match_quality_matrix)
if self.boundary_threshold >= 0:
# Discard anchors that go out of the boundaries of the image
# NOTE: This is legacy functionality that is turned off by default in Detectron2
anchors_inside_image = anchors_i.inside_box(image_size_i, self.boundary_threshold)
gt_objectness_logits_i[~anchors_inside_image] = -1
if len(gt_boxes_i) == 0:
# These values won't be used anyway since the anchor is labeled as background
gt_anchor_deltas_i = torch.zeros_like(anchors_i.tensor)
else:
# TODO wasted computation for ignored boxes
matched_gt_boxes = gt_boxes_i[matched_idxs]
gt_anchor_deltas_i = self.box2box_transform.get_deltas(
anchors_i.tensor, matched_gt_boxes.tensor
)
gt_objectness_logits.append(gt_objectness_logits_i)
gt_anchor_deltas.append(gt_anchor_deltas_i)
return gt_objectness_logits, gt_anchor_deltas
def losses(self):
"""
Return the losses from a set of RPN predictions and their associated ground-truth.
Returns:
dict[loss name -> loss value]: A dict mapping from loss name to loss value.
Loss names are: `loss_rpn_cls` for objectness classification and
`loss_rpn_loc` for proposal localization.
"""
def resample(label):
"""
Randomly sample a subset of positive and negative examples by overwriting
the label vector to the ignore value (-1) for all elements that are not
included in the sample.
"""
pos_idx, neg_idx = subsample_labels(
label, self.batch_size_per_image, self.positive_fraction, 0
)
# Fill with the ignore label (-1), then set positive and negative labels
label.fill_(-1)
label.scatter_(0, pos_idx, 1)
label.scatter_(0, neg_idx, 0)
return label
gt_objectness_logits, gt_anchor_deltas = self._get_ground_truth()
"""
gt_objectness_logits: list of N tensors. Tensor i is a vector whose length is the
total number of anchors in image i (i.e., len(anchors[i]))
gt_anchor_deltas: list of N tensors. Tensor i has shape (len(anchors[i]), B),
where B is the box dimension
"""
# Collect all objectness labels and delta targets over feature maps and images
# The final ordering is L, N, H, W, A from slowest to fastest axis.
num_anchors_per_map = [int(np.prod(x.shape[1:])/2) for x in self.pred_objectness_logits]
num_anchors_per_image = sum(num_anchors_per_map)
# Stack to: (N, num_anchors_per_image)
gt_objectness_logits = torch.stack(
[resample(label) for label in gt_objectness_logits], dim=0
)
# Log the number of positive/negative anchors per-image that's used in training
num_pos_anchors = (gt_objectness_logits == 1).sum().item()
num_neg_anchors = (gt_objectness_logits == 0).sum().item()
storage = get_event_storage()
storage.put_scalar("rpn/num_pos_anchors", num_pos_anchors / self.num_images)
storage.put_scalar("rpn/num_neg_anchors", num_neg_anchors / self.num_images)
assert gt_objectness_logits.shape[1] == num_anchors_per_image
# Split to tuple of L tensors, each with shape (N, num_anchors_per_map)
gt_objectness_logits = torch.split(gt_objectness_logits, num_anchors_per_map, dim=1)
# Concat from all feature maps
gt_objectness_logits = cat([x.flatten() for x in gt_objectness_logits], dim=0)
# Stack to: (N, num_anchors_per_image, B)
gt_anchor_deltas = torch.stack(gt_anchor_deltas, dim=0)
assert gt_anchor_deltas.shape[1] == num_anchors_per_image
B = gt_anchor_deltas.shape[2] # box dimension (4 or 5)
# Split to tuple of L tensors, each with shape (N, num_anchors_per_image)
gt_anchor_deltas = torch.split(gt_anchor_deltas, num_anchors_per_map, dim=1)
# Concat from all feature maps
gt_anchor_deltas = cat([x.reshape(-1, B) for x in gt_anchor_deltas], dim=0)
# Collect all objectness logits and delta predictions over feature maps
# and images to arrive at the same shape as the labels and targets
# The final ordering is L, N, H, W, 2A from slowest to fastest axis.
pred_objectness_logits = cat(
[
# Reshape: (N, 2A, Hi, Wi) -> (N, Hi, Wi, 2A) -> (N*Hi*Wi*A, 2)
x.permute(0, 2, 3, 1).reshape(-1, 2)
for x in self.pred_objectness_logits
],
dim=0,
)
pred_anchor_deltas = cat(
[
# Reshape: (N, A*B, Hi, Wi) -> (N, A, B, Hi, Wi) -> (N, Hi, Wi, A, B)
# -> (N*Hi*Wi*A, B)
x.view(x.shape[0], -1, B, x.shape[-2], x.shape[-1])
.permute(0, 3, 4, 1, 2)
.reshape(-1, B)
for x in self.pred_anchor_deltas
],
dim=0,
)
objectness_loss, localization_loss = bua_rpn_losses(
gt_objectness_logits,
gt_anchor_deltas,
pred_objectness_logits,
pred_anchor_deltas,
self.smooth_l1_beta,
)
normalizer = 1.0 / (self.batch_size_per_image * self.num_images)
loss_cls = objectness_loss * normalizer # cls: classification loss
loss_loc = localization_loss * normalizer # loc: localization loss
losses = {"loss_rpn_cls": loss_cls, "loss_rpn_loc": loss_loc}
return losses
def predict_proposals(self):
"""
Transform anchors into proposals by applying the predicted anchor deltas.
Returns:
proposals (list[Tensor]): A list of L tensors. Tensor i has shape
(N, Hi*Wi*A, B), where B is box dimension (4 or 5).
"""
proposals = []
# Transpose anchors from images-by-feature-maps (N, L) to feature-maps-by-images (L, N)
anchors = list(zip(*self.anchors))
# anchors = list(zip(*[self.anchors]))
# For each feature map
for anchors_i, pred_anchor_deltas_i in zip(anchors, self.pred_anchor_deltas):
B = anchors_i[0].tensor.size(1)
N, _, Hi, Wi = pred_anchor_deltas_i.shape
# Reshape: (N, A*B, Hi, Wi) -> (N, A, B, Hi, Wi) -> (N, Hi, Wi, A, B) -> (N*Hi*Wi*A, B)
pred_anchor_deltas_i = (
pred_anchor_deltas_i.view(N, -1, B, Hi, Wi).permute(0, 3, 4, 1, 2).reshape(-1, B)
)
# Concatenate all anchors to shape (N*Hi*Wi*A, B)
# type(anchors_i[0]) is Boxes (B = 4) or RotatedBoxes (B = 5)
anchors_i = type(anchors_i[0]).cat(anchors_i)
proposals_i = self.box2box_transform.apply_deltas(
pred_anchor_deltas_i, anchors_i.tensor
)
# Append feature map proposals with shape (N, Hi*Wi*A, B)
proposals.append(proposals_i.view(N, -1, B))
return proposals
def predict_objectness_logits(self):
"""
Return objectness logits in the same format as the proposals returned by
:meth:`predict_proposals`.
Returns:
pred_objectness_logits (list[Tensor]): A list of L tensors. Tensor i has shape
(N, Hi*Wi*A).
"""
pred_objectness_logits = [
# Reshape: (N, 2A, Hi, Wi) -> (N, 2, A, Hi, Wi) -> (N, Hi, Wi, 1, A) -> (N, Hi*Wi*A)
F.softmax(score.view(score.shape[0], 2, int(float(score.shape[1]) / float(2)), score.shape[2], score.shape[3]), dim=1)[:, 1:, :, :, :]\
.permute(0, 3, 4, 1, 2).reshape(self.num_images, -1)
for score in self.pred_objectness_logits
]
return pred_objectness_logits
def bua_rpn_losses(
gt_objectness_logits,
gt_anchor_deltas,
pred_objectness_logits,
pred_anchor_deltas,
smooth_l1_beta,
):
"""
Args:
gt_objectness_logits (Tensor): shape (N,), each element in {-1, 0, 1} representing
ground-truth objectness labels with: -1 = ignore; 0 = not object; 1 = object.
gt_anchor_deltas (Tensor): shape (N, box_dim), row i represents ground-truth
box2box transform targets (dx, dy, dw, dh) or (dx, dy, dw, dh, da) that map anchor i to
its matched ground-truth box.
pred_objectness_logits (Tensor): shape (N, 2), each element is a predicted objectness
logit.
pred_anchor_deltas (Tensor): shape (N, box_dim), each row is a predicted box2box
transform (dx, dy, dw, dh) or (dx, dy, dw, dh, da)
smooth_l1_beta (float): The transition point between L1 and L2 loss in
the smooth L1 loss function. When set to 0, the loss becomes L1. When
set to +inf, the loss becomes constant 0.
Returns:
objectness_loss, localization_loss, both unnormalized (summed over samples).
"""
pos_masks = gt_objectness_logits == 1
localization_loss = smooth_l1_loss(
pred_anchor_deltas[pos_masks], gt_anchor_deltas[pos_masks], smooth_l1_beta, reduction="sum"
)
valid_masks = gt_objectness_logits >= 0
objectness_loss = F.cross_entropy(
pred_objectness_logits[valid_masks],
gt_objectness_logits[valid_masks].to(torch.long),
reduction="sum",
)
return objectness_loss, localization_loss