100 lines
2.7 KiB
Python
100 lines
2.7 KiB
Python
# -----------------------------------------------------------
|
|
# Stacked Cross Attention Network implementation based on
|
|
# https://arxiv.org/abs/1803.08024.
|
|
# "Stacked Cross Attention for Image-Text Matching"
|
|
# Kuang-Huei Lee, Xi Chen, Gang Hua, Houdong Hu, Xiaodong He
|
|
#
|
|
# Writen by Kuang-Huei Lee, 2018
|
|
# ---------------------------------------------------------------
|
|
"""Vocabulary wrapper"""
|
|
|
|
import nltk
|
|
from collections import Counter
|
|
import argparse
|
|
import os
|
|
import json
|
|
|
|
annotations = {
|
|
'coco_precomp': ['train_caps.txt', 'dev_caps.txt'],
|
|
'f30k_precomp': ['train_caps.txt', 'dev_caps.txt'],
|
|
}
|
|
|
|
|
|
class Vocabulary(object):
|
|
"""Simple vocabulary wrapper."""
|
|
|
|
def __init__(self):
|
|
self.word2idx = {}
|
|
self.idx2word = {}
|
|
self.idx = 0
|
|
|
|
def add_word(self, word):
|
|
if word not in self.word2idx:
|
|
self.word2idx[word] = self.idx
|
|
self.idx2word[self.idx] = word
|
|
self.idx += 1
|
|
|
|
def __call__(self, word):
|
|
if word not in self.word2idx:
|
|
return self.word2idx['<unk>']
|
|
return self.word2idx[word]
|
|
|
|
def __len__(self):
|
|
return len(self.word2idx)
|
|
|
|
|
|
def serialize_vocab(vocab, dest):
|
|
d = {}
|
|
d['word2idx'] = vocab.word2idx
|
|
d['idx2word'] = vocab.idx2word
|
|
d['idx'] = vocab.idx
|
|
with open(dest, "w") as f:
|
|
json.dump(d, f)
|
|
|
|
|
|
def deserialize_vocab(src):
|
|
with open(src) as f:
|
|
d = json.load(f)
|
|
vocab = Vocabulary()
|
|
vocab.word2idx = d['word2idx']
|
|
vocab.idx2word = d['idx2word']
|
|
vocab.idx = d['idx']
|
|
return vocab
|
|
|
|
|
|
def from_txt(txt):
|
|
captions = []
|
|
with open(txt, 'rb') as f:
|
|
for line in f:
|
|
captions.append(line.strip())
|
|
return captions
|
|
|
|
|
|
def build_vocab(data_path, data_name, caption_file, threshold):
|
|
"""Build a simple vocabulary wrapper."""
|
|
counter = Counter()
|
|
for path in caption_file[data_name]:
|
|
full_path = os.path.join(os.path.join(data_path, data_name), path)
|
|
captions = from_txt(full_path)
|
|
for i, caption in enumerate(captions):
|
|
tokens = nltk.tokenize.word_tokenize(
|
|
caption.lower().decode('utf-8'))
|
|
counter.update(tokens)
|
|
|
|
if i % 1000 == 0:
|
|
print("[%d/%d] tokenized the captions." % (i, len(captions)))
|
|
|
|
# Discard if the occurrence of the word is less than min_word_cnt.
|
|
words = [word for word, cnt in counter.items() if cnt >= threshold]
|
|
|
|
# Create a vocab wrapper and add some special tokens.
|
|
vocab = Vocabulary()
|
|
vocab.add_word('<pad>')
|
|
vocab.add_word('<start>')
|
|
vocab.add_word('<end>')
|
|
vocab.add_word('<unk>')
|
|
|
|
# Add words to the vocabulary.
|
|
for i, word in enumerate(words):
|
|
vocab.add_word(word)
|
|
return vocab |