rzzn ed6e78ba09 | ||
---|---|---|
.. | ||
__pycache__ | ||
data | ||
detection | ||
exec | ||
figure | ||
logs | ||
model | ||
option | ||
output | ||
postprocessing | ||
seq2vec | ||
util | ||
vocab | ||
README.md | ||
RSICD_GAC_decay0.5_m0.2 | ||
RSICD_GAC_decay0.5_m0.2_without_m4m5.txt | ||
RSICD_GAC_decay0.5_m0.2_without_m5.txt | ||
data.py | ||
engine.py | ||
find_best_pth.py | ||
mytools.py | ||
result.txt | ||
run_score_log.txt | ||
run_score_log1.txt | ||
run_score_log2.txt | ||
run_score_log3.txt | ||
run_scores.sh | ||
test_ave.py | ||
test_single.py | ||
train.py | ||
utils.py | ||
vocab.py | ||
vocab_glove.py |
README.md
The pytorch code for ACF
Author: Zhiming Wang
-------------------------------------------------------------------------------------
INTRODUCTION
基于注意力校正和过滤的跨模态遥感图像检索算法
Network Architecture
Performance
-------------------------------------------------------------------------------------
IMPLEMENTATION
代码实现基于GaLR
Installation
We recommended the following dependencies:
Python 3
PyTorch > 0.3
Numpy
h5py
nltk
yaml
file structure:
-- checkpoint # savepath of ckpt and logs
-- data # soorted anns of four datesets
-- rsicd_precomp
-- train_caps.txt # train anns
-- train_filename.txt # corresponding imgs
-- test_caps.txt # test anns
-- test_filename.txt # corresponding imgs
-- images # rsicd images here
-- rsitmd_precomp
...
-- exec # .sh file
-- layers # models define
-- logs # tensorboard save file
-- option # different config for different datasets and models
-- util # some script for data processing
-- vocab # vocabs for different datasets
-- seq2vec # some files about seq2vec
-- bi_skip.npz
-- bi_skip.npz.pkl
-- btable.npy
-- dictionary.txt
-- uni_skip.npz
-- uni_skip.npz.pkl
-- utable.npy
-- postprocessing # multivariate rerank
-- rerank.py
-- file
-- data.py # load data
-- engine.py # details about train and val
-- test.py # test k-fold answers
-- test_single.py # test one model
-- train.py # main file
-- utils.py # some tools
-- vocab.py # generate vocab
Note:
1. In order to facilitate reproduction, we have provided processed annotations.
2. We prepare some used file::
(1)[seq2vec (Password:NIST)](https://pan.baidu.com/s/1jz61ZYs8NZflhU_Mm4PbaQ)
(2)[RSICD images (Password:NIST)](https://pan.baidu.com/s/1lH5m047P9m2IvoZMPsoDsQ)
Run: (We take the dataset RSITMD as an example)
Step1:
Put the images of different datasets in ./data/{dataset}_precomp/images/
--data
--rsitmd_precomp
-- train_caps.txt # train anns
-- train_filename.txt # corresponding imgs
-- test_caps.txt # test anns
-- test_filename.txt # corresponding imgs
-- images # images here
--img1.jpg
--img2.jpg
...
Step2:
Modify the corresponding yaml in ./options.
Regard RSITMD_AMFMN.yaml as opt, which you need to change is:
opt['dataset']['data_path'] # change to precomp path
opt['dataset']['image_path'] # change to image path
opt['model']['seq2vec']['dir_st'] # some files about seq2vec
Step3:
Bash the ./sh in ./exec.
Note the GPU define in specific .sh file.
cd exec/RSICD
bash run_GAC_rsicd.sh
Note: We use k-fold verity to do a fair compare. Other details please see the code itself.