Graduation_Project/WZM/model/gcn_lib/torch_edge.py

164 lines
5.8 KiB
Python

# 2022.06.17-Changed for building ViG model
# Huawei Technologies Co., Ltd. <foss@huawei.com>
import math
import torch
from torch import nn
import torch.nn.functional as F
def pairwise_distance(x):
"""
Compute pairwise distance of a point cloud.
Args:
x: tensor (batch_size, num_points, num_dims)
Returns:
pairwise distance: (batch_size, num_points, num_points)
"""
with torch.no_grad():
x_inner = -2*torch.matmul(x, x.transpose(2, 1))
x_square = torch.sum(torch.mul(x, x), dim=-1, keepdim=True)
return x_square + x_inner + x_square.transpose(2, 1)
def part_pairwise_distance(x, start_idx=0, end_idx=1):
"""
Compute pairwise distance of a point cloud.
Args:
x: tensor (batch_size, num_points, num_dims)
Returns:
pairwise distance: (batch_size, num_points, num_points)
"""
with torch.no_grad():
x_part = x[:, start_idx:end_idx]
x_square_part = torch.sum(torch.mul(x_part, x_part), dim=-1, keepdim=True)
x_inner = -2*torch.matmul(x_part, x.transpose(2, 1))
x_square = torch.sum(torch.mul(x, x), dim=-1, keepdim=True)
return x_square_part + x_inner + x_square.transpose(2, 1)
def xy_pairwise_distance(x, y):
"""
Compute pairwise distance of a point cloud.
Args:
x: tensor (batch_size, num_points, num_dims)
Returns:
pairwise distance: (batch_size, num_points, num_points)
"""
with torch.no_grad():
xy_inner = -2*torch.matmul(x, y.transpose(2, 1))
x_square = torch.sum(torch.mul(x, x), dim=-1, keepdim=True)
y_square = torch.sum(torch.mul(y, y), dim=-1, keepdim=True)
return x_square + xy_inner + y_square.transpose(2, 1)
def dense_knn_matrix(x, k=16, relative_pos=None):
"""Get KNN based on the pairwise distance.
Args:
x: (batch_size, num_dims, num_points, 1)
k: int
Returns:
nearest neighbors: (batch_size, num_points, k) (batch_size, num_points, k)
"""
with torch.no_grad():
x = x.transpose(2, 1).squeeze(-1)
batch_size, n_points, n_dims = x.shape
### memory efficient implementation ###
n_part = 10000
if n_points > n_part:
nn_idx_list = []
groups = math.ceil(n_points / n_part)
for i in range(groups):
start_idx = n_part * i
end_idx = min(n_points, n_part * (i + 1))
dist = part_pairwise_distance(x.detach(), start_idx, end_idx)
if relative_pos is not None:
dist += relative_pos[:, start_idx:end_idx]
_, nn_idx_part = torch.topk(-dist, k=k)
nn_idx_list += [nn_idx_part]
nn_idx = torch.cat(nn_idx_list, dim=1)
else:
dist = pairwise_distance(x.detach())
if relative_pos is not None:
dist += relative_pos
_, nn_idx = torch.topk(-dist, k=k) # b, n, k
######
center_idx = torch.arange(0, n_points, device=x.device).repeat(batch_size, k, 1).transpose(2, 1)
return torch.stack((nn_idx, center_idx), dim=0)
def xy_dense_knn_matrix(x, y, k=16, relative_pos=None):
"""Get KNN based on the pairwise distance.
Args:
x: (batch_size, num_dims, num_points, 1)
k: int
Returns:
nearest neighbors: (batch_size, num_points, k) (batch_size, num_points, k)
"""
with torch.no_grad():
x = x.transpose(2, 1).squeeze(-1)
y = y.transpose(2, 1).squeeze(-1)
# print('-------x.shape : ', x.shape)
batch_size, n_points, n_dims = x.shape
dist = xy_pairwise_distance(x.detach(), y.detach())
# print('-------dist.shape : ', dist.shape)
# print('-------relative_pos.shape : ', relative_pos.shape)
if relative_pos is not None:
dist += relative_pos
_, nn_idx = torch.topk(-dist, k=k)
center_idx = torch.arange(0, n_points, device=x.device).repeat(batch_size, k, 1).transpose(2, 1)
return torch.stack((nn_idx, center_idx), dim=0)
class DenseDilated(nn.Module):
"""
Find dilated neighbor from neighbor list
edge_index: (2, batch_size, num_points, k)
"""
def __init__(self, k=9, dilation=1, stochastic=False, epsilon=0.0):
super(DenseDilated, self).__init__()
self.dilation = dilation
self.stochastic = stochastic
self.epsilon = epsilon
self.k = k
def forward(self, edge_index):
if self.stochastic:
if torch.rand(1) < self.epsilon and self.training:
num = self.k * self.dilation
randnum = torch.randperm(num)[:self.k]
edge_index = edge_index[:, :, :, randnum]
else:
edge_index = edge_index[:, :, :, ::self.dilation]
else:
edge_index = edge_index[:, :, :, ::self.dilation]
return edge_index
class DenseDilatedKnnGraph(nn.Module):
"""
Find the neighbors' indices based on dilated knn
"""
def __init__(self, k=9, dilation=1, stochastic=False, epsilon=0.0):
super(DenseDilatedKnnGraph, self).__init__()
self.dilation = dilation
self.stochastic = stochastic
self.epsilon = epsilon
self.k = k
self._dilated = DenseDilated(k, dilation, stochastic, epsilon)
def forward(self, x, y=None, relative_pos=None):
if y is not None:
#### normalize
x = F.normalize(x, p=2.0, dim=1)
y = F.normalize(y, p=2.0, dim=1)
####
edge_index = xy_dense_knn_matrix(x, y, self.k * self.dilation, relative_pos)
else:
#### normalize
x = F.normalize(x, p=2.0, dim=1)
####
edge_index = dense_knn_matrix(x, self.k * self.dilation, relative_pos)
# print('-----edge_index.shape : ', edge_index.shape)
return self._dilated(edge_index)