164 lines
5.8 KiB
Python
164 lines
5.8 KiB
Python
# 2022.06.17-Changed for building ViG model
|
|
# Huawei Technologies Co., Ltd. <foss@huawei.com>
|
|
import math
|
|
import torch
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
|
|
|
|
def pairwise_distance(x):
|
|
"""
|
|
Compute pairwise distance of a point cloud.
|
|
Args:
|
|
x: tensor (batch_size, num_points, num_dims)
|
|
Returns:
|
|
pairwise distance: (batch_size, num_points, num_points)
|
|
"""
|
|
with torch.no_grad():
|
|
x_inner = -2*torch.matmul(x, x.transpose(2, 1))
|
|
x_square = torch.sum(torch.mul(x, x), dim=-1, keepdim=True)
|
|
return x_square + x_inner + x_square.transpose(2, 1)
|
|
|
|
|
|
def part_pairwise_distance(x, start_idx=0, end_idx=1):
|
|
"""
|
|
Compute pairwise distance of a point cloud.
|
|
Args:
|
|
x: tensor (batch_size, num_points, num_dims)
|
|
Returns:
|
|
pairwise distance: (batch_size, num_points, num_points)
|
|
"""
|
|
with torch.no_grad():
|
|
x_part = x[:, start_idx:end_idx]
|
|
x_square_part = torch.sum(torch.mul(x_part, x_part), dim=-1, keepdim=True)
|
|
x_inner = -2*torch.matmul(x_part, x.transpose(2, 1))
|
|
x_square = torch.sum(torch.mul(x, x), dim=-1, keepdim=True)
|
|
return x_square_part + x_inner + x_square.transpose(2, 1)
|
|
|
|
|
|
def xy_pairwise_distance(x, y):
|
|
"""
|
|
Compute pairwise distance of a point cloud.
|
|
Args:
|
|
x: tensor (batch_size, num_points, num_dims)
|
|
Returns:
|
|
pairwise distance: (batch_size, num_points, num_points)
|
|
"""
|
|
with torch.no_grad():
|
|
xy_inner = -2*torch.matmul(x, y.transpose(2, 1))
|
|
x_square = torch.sum(torch.mul(x, x), dim=-1, keepdim=True)
|
|
y_square = torch.sum(torch.mul(y, y), dim=-1, keepdim=True)
|
|
return x_square + xy_inner + y_square.transpose(2, 1)
|
|
|
|
|
|
def dense_knn_matrix(x, k=16, relative_pos=None):
|
|
"""Get KNN based on the pairwise distance.
|
|
Args:
|
|
x: (batch_size, num_dims, num_points, 1)
|
|
k: int
|
|
Returns:
|
|
nearest neighbors: (batch_size, num_points, k) (batch_size, num_points, k)
|
|
"""
|
|
with torch.no_grad():
|
|
x = x.transpose(2, 1).squeeze(-1)
|
|
batch_size, n_points, n_dims = x.shape
|
|
### memory efficient implementation ###
|
|
n_part = 10000
|
|
if n_points > n_part:
|
|
nn_idx_list = []
|
|
groups = math.ceil(n_points / n_part)
|
|
for i in range(groups):
|
|
start_idx = n_part * i
|
|
end_idx = min(n_points, n_part * (i + 1))
|
|
dist = part_pairwise_distance(x.detach(), start_idx, end_idx)
|
|
if relative_pos is not None:
|
|
dist += relative_pos[:, start_idx:end_idx]
|
|
_, nn_idx_part = torch.topk(-dist, k=k)
|
|
nn_idx_list += [nn_idx_part]
|
|
nn_idx = torch.cat(nn_idx_list, dim=1)
|
|
else:
|
|
dist = pairwise_distance(x.detach())
|
|
if relative_pos is not None:
|
|
dist += relative_pos
|
|
_, nn_idx = torch.topk(-dist, k=k) # b, n, k
|
|
######
|
|
center_idx = torch.arange(0, n_points, device=x.device).repeat(batch_size, k, 1).transpose(2, 1)
|
|
return torch.stack((nn_idx, center_idx), dim=0)
|
|
|
|
|
|
def xy_dense_knn_matrix(x, y, k=16, relative_pos=None):
|
|
"""Get KNN based on the pairwise distance.
|
|
Args:
|
|
x: (batch_size, num_dims, num_points, 1)
|
|
k: int
|
|
Returns:
|
|
nearest neighbors: (batch_size, num_points, k) (batch_size, num_points, k)
|
|
"""
|
|
with torch.no_grad():
|
|
x = x.transpose(2, 1).squeeze(-1)
|
|
y = y.transpose(2, 1).squeeze(-1)
|
|
# print('-------x.shape : ', x.shape)
|
|
batch_size, n_points, n_dims = x.shape
|
|
dist = xy_pairwise_distance(x.detach(), y.detach())
|
|
# print('-------dist.shape : ', dist.shape)
|
|
# print('-------relative_pos.shape : ', relative_pos.shape)
|
|
if relative_pos is not None:
|
|
dist += relative_pos
|
|
_, nn_idx = torch.topk(-dist, k=k)
|
|
center_idx = torch.arange(0, n_points, device=x.device).repeat(batch_size, k, 1).transpose(2, 1)
|
|
return torch.stack((nn_idx, center_idx), dim=0)
|
|
|
|
|
|
class DenseDilated(nn.Module):
|
|
"""
|
|
Find dilated neighbor from neighbor list
|
|
|
|
edge_index: (2, batch_size, num_points, k)
|
|
"""
|
|
def __init__(self, k=9, dilation=1, stochastic=False, epsilon=0.0):
|
|
super(DenseDilated, self).__init__()
|
|
self.dilation = dilation
|
|
self.stochastic = stochastic
|
|
self.epsilon = epsilon
|
|
self.k = k
|
|
|
|
def forward(self, edge_index):
|
|
if self.stochastic:
|
|
if torch.rand(1) < self.epsilon and self.training:
|
|
num = self.k * self.dilation
|
|
randnum = torch.randperm(num)[:self.k]
|
|
edge_index = edge_index[:, :, :, randnum]
|
|
else:
|
|
edge_index = edge_index[:, :, :, ::self.dilation]
|
|
else:
|
|
edge_index = edge_index[:, :, :, ::self.dilation]
|
|
return edge_index
|
|
|
|
|
|
class DenseDilatedKnnGraph(nn.Module):
|
|
"""
|
|
Find the neighbors' indices based on dilated knn
|
|
"""
|
|
def __init__(self, k=9, dilation=1, stochastic=False, epsilon=0.0):
|
|
super(DenseDilatedKnnGraph, self).__init__()
|
|
self.dilation = dilation
|
|
self.stochastic = stochastic
|
|
self.epsilon = epsilon
|
|
self.k = k
|
|
self._dilated = DenseDilated(k, dilation, stochastic, epsilon)
|
|
|
|
def forward(self, x, y=None, relative_pos=None):
|
|
if y is not None:
|
|
#### normalize
|
|
x = F.normalize(x, p=2.0, dim=1)
|
|
y = F.normalize(y, p=2.0, dim=1)
|
|
####
|
|
edge_index = xy_dense_knn_matrix(x, y, self.k * self.dilation, relative_pos)
|
|
else:
|
|
#### normalize
|
|
x = F.normalize(x, p=2.0, dim=1)
|
|
####
|
|
edge_index = dense_knn_matrix(x, self.k * self.dilation, relative_pos)
|
|
# print('-----edge_index.shape : ', edge_index.shape)
|
|
return self._dilated(edge_index)
|