Graduation_Project/WZM/model/gcn_lib/torch_nn.py

103 lines
3.5 KiB
Python

# 2022.06.17-Changed for building ViG model
# Huawei Technologies Co., Ltd. <foss@huawei.com>
import torch
from torch import nn
from torch.nn import Sequential as Seq, Linear as Lin, Conv2d
##############################
# Basic layers
##############################
def act_layer(act, inplace=False, neg_slope=0.2, n_prelu=1):
# activation layer
act = act.lower()
if act == 'relu':
layer = nn.ReLU(inplace)
elif act == 'leakyrelu':
layer = nn.LeakyReLU(neg_slope, inplace)
elif act == 'prelu':
layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope)
elif act == 'gelu':
layer = nn.GELU()
elif act == 'hswish':
layer = nn.Hardswish(inplace)
else:
raise NotImplementedError('activation layer [%s] is not found' % act)
return layer
def norm_layer(norm, nc):
# normalization layer 2d
norm = norm.lower()
if norm == 'batch':
layer = nn.BatchNorm2d(nc, affine=True)
elif norm == 'instance':
layer = nn.InstanceNorm2d(nc, affine=False)
else:
raise NotImplementedError('normalization layer [%s] is not found' % norm)
return layer
class MLP(Seq):
def __init__(self, channels, act='relu', norm=None, bias=True):
m = []
for i in range(1, len(channels)):
m.append(Lin(channels[i - 1], channels[i], bias))
if act is not None and act.lower() != 'none':
m.append(act_layer(act))
if norm is not None and norm.lower() != 'none':
m.append(norm_layer(norm, channels[-1]))
super(MLP, self).__init__(*m)
class BasicConv(Seq):
def __init__(self, channels, act='relu', norm=None, bias=True, drop=0.):
m = []
for i in range(1, len(channels)):
m.append(Conv2d(channels[i - 1], channels[i], 1, bias=bias, groups=4))
if norm is not None and norm.lower() != 'none':
m.append(norm_layer(norm, channels[-1]))
if act is not None and act.lower() != 'none':
m.append(act_layer(act))
if drop > 0:
m.append(nn.Dropout2d(drop))
super(BasicConv, self).__init__(*m)
self.reset_parameters()
def reset_parameters(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.InstanceNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def batched_index_select(x, idx):
r"""fetches neighbors features from a given neighbor idx
Args:
x (Tensor): input feature Tensor
:math:`\mathbf{X} \in \mathbb{R}^{B \times C \times N \times 1}`.
idx (Tensor): edge_idx
:math:`\mathbf{X} \in \mathbb{R}^{B \times N \times l}`.
Returns:
Tensor: output neighbors features
:math:`\mathbf{X} \in \mathbb{R}^{B \times C \times N \times k}`.
"""
batch_size, num_dims, num_vertices_reduced = x.shape[:3]
_, num_vertices, k = idx.shape
idx_base = torch.arange(0, batch_size, device=idx.device).view(-1, 1, 1) * num_vertices_reduced
idx = idx + idx_base
idx = idx.contiguous().view(-1)
x = x.transpose(2, 1)
feature = x.contiguous().view(batch_size * num_vertices_reduced, -1)[idx, :]
feature = feature.view(batch_size, num_vertices, k, num_dims).permute(0, 3, 1, 2).contiguous()
return feature