Graduation_Project/WZM/model/test_module.py

157 lines
5.8 KiB
Python

import torch
import torch.nn as nn
import torch.nn.init
import numpy as np
from torchvision.models.resnet import resnet18
import torch.nn.functional as F
from torchsummary import summary
# from pyramid_vig import DeepGCN, pvig_ti_224_gelu
# from GAT import GAT, GATopt
from transformers import BertModel, BertTokenizer
import random
def l2norm(X, dim, eps=1e-8):
"""L2-normalize columns of X
"""
norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps
X = torch.div(X, norm)
return X
def process_caption(tokenizer, tokens, train=True):
output_tokens = []
deleted_idx = []
for i, token in enumerate(tokens):
sub_tokens = tokenizer.wordpiece_tokenizer.tokenize(token)
prob = random.random()
if prob < 0.20 and train: # mask/remove the tokens only during training
prob /= 0.20
# 50% randomly change token to mask token
if prob < 0.5:
for sub_token in sub_tokens:
output_tokens.append("[MASK]")
# 10% randomly change token to random token
elif prob < 0.6:
for sub_token in sub_tokens:
output_tokens.append(random.choice(list(tokenizer.vocab.keys())))
# -> rest 10% randomly keep current token
else:
for sub_token in sub_tokens:
output_tokens.append(sub_token)
deleted_idx.append(len(output_tokens) - 1)
else:
for sub_token in sub_tokens:
# no masking token (will be ignored by loss function later)
output_tokens.append(sub_token)
if len(deleted_idx) != 0:
output_tokens = [output_tokens[i] for i in range(len(output_tokens)) if i not in deleted_idx]
output_tokens = ['[CLS]'] + output_tokens + ['[SEP]']
target = tokenizer.convert_tokens_to_ids(output_tokens)
target = torch.Tensor(target).long()
return target
# Language Model with BERT
class EncoderText(nn.Module):
def __init__(self, embed_size, no_txtnorm=False):
super(EncoderText, self).__init__()
self.embed_size = embed_size
self.no_txtnorm = no_txtnorm
self.bert = BertModel.from_pretrained('bert-base-uncased')
self.linear = nn.Linear(768, embed_size)
# self.gpool = GPO(32, 32)
def forward(self, x):
"""Handles variable size captions
"""
# Embed word ids to vectors
bert_attention_mask = (x != 0)
bert_emb = self.bert(x, bert_attention_mask)[0] # B x N x D
# cap_len = lengths
cap_emb = self.linear(bert_emb)
return cap_emb
# pooled_features, pool_weights = self.gpool(cap_emb, cap_len.to(cap_emb.device))
# normalization in the joint embedding space
# if not self.no_txtnorm:
# pooled_features = l2norm(pooled_features, dim=-1)
# return pooled_features
# class TextEncoder(nn.Module):
# def __init__(self, bert_path = None, ft_bert = False, bert_size = 768, embed_size = 512):
# super(TextEncoder, self).__init__()
# self.bert = BertModel.from_pretrained(bert_path)
# self.tokenizer = get_tokenizer(bert_path)
# self.max_seq_len = 32
# if not ft_bert:
# for param in self.bert.parameters():
# param.requires_grad = False
# print('text-encoder-bert no grad')
# else:
# print('text-encoder-bert fine-tuning !')
# self.embed_size = embed_size
# self.fc = nn.Sequential(nn.Linear(bert_size, embed_size), nn.ReLU(), nn.Dropout(0.1))
# def forward(self, captions):
# captions = self.get_text_input(captions)
# all_encoders, pooled = self.bert(captions.unsqueeze(0))
# out = all_encoders[-1]
# out = self.fc(out)
# return out
# def get_text_input(self, caption):
# # print(caption)
# caption_tokens = self.tokenizer.tokenize(caption)
# caption_tokens = ['[CLS]'] + caption_tokens + ['[SEP]']
# caption_ids = self.tokenizer.convert_tokens_to_ids(caption_tokens)
# if len(caption_ids) >= self.max_seq_len:
# caption_ids = caption_ids[:self.max_seq_len]
# else:
# caption_ids = caption_ids + [0] * (self.max_seq_len - len(caption_ids))
# caption = torch.tensor(caption_ids)
# return caption
# def get_tokenizer(bert_path):
# tokenizer = BertTokenizer(bert_path + 'vocab.txt')
# return tokenizer
if __name__ == '__main__':
# model = GAT(GATopt(20, 1))
# inputs = torch.randn(16, 20, 7, 7)
# print('inputs shape : ', inputs.shape)
# outputs = model(inputs)
# print('outputs shape : ', outputs.shape)
# model = pvig_ti_224_gelu()
# print(summary(model, (3, 224, 224), device="cpu"))
# model.backbone[2].add_module('GAT', GAT(GATopt(96, 1)))
# model.backbone[5].add_module('GAT', GAT(GATopt(240, 1)))
# model.backbone[12].add_module('GAT', GAT(GATopt(384, 1)))
# print(model)
# inputs = torch.randn(16, 3, 224, 224)
# print('inputs shape : ', inputs.shape)
# low_feature, mid_feature, solo_feature = model(inputs)
# print('low_feature shape : ', low_feature.shape)
# print('mid_feature shape : ', mid_feature.shape)
# print('solo_feature shape : ', solo_feature.shape)
# vsa_model = VSA_Module()
# outputs = vsa_model(low_feature, mid_feature, solo_feature)
# print('outputs shape : ', outputs.shape)
bert_path = "/home/wzm/crossmodal/uncased_L-12_H-768_A-12/"
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
inputs = ["i'm hello world 22"]
target = process_caption(tokenizer, inputs).unsqueeze(0)
print("target shape: ", target.shape)
model = EncoderText(512)
outputs = model(target)
print("outputs shape : ", outputs.shape)
print("outputs : ", outputs)