120 lines
4.0 KiB
Python
120 lines
4.0 KiB
Python
import os, random, copy
|
|
import numpy as np
|
|
import torch
|
|
import argparse
|
|
import yaml
|
|
import logging
|
|
|
|
import utils
|
|
import data
|
|
import engine
|
|
|
|
from vocab import deserialize_vocab
|
|
import mytools
|
|
|
|
def parser_options():
|
|
# Hyper Parameters setting
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--path_opt', default='option/RSITMD_mca/RSITMD_GAC.yaml', type=str,
|
|
help='path to a yaml options file')
|
|
opt = parser.parse_args()
|
|
|
|
# load model options
|
|
with open(opt.path_opt, 'r') as handle:
|
|
options = yaml.safe_load(handle)
|
|
|
|
return options
|
|
|
|
def main(options):
|
|
|
|
# choose model
|
|
if options['model']['name'] == "GAC":
|
|
from model import GAC as models
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
# make vocab
|
|
vocab = deserialize_vocab(options['dataset']['vocab_path'])
|
|
vocab_size = len(vocab)
|
|
vocab_word = sorted(vocab.word2idx.items(), key=lambda x: x[1], reverse=False)
|
|
vocab_word = [tup[0] for tup in vocab_word]
|
|
|
|
# Create dataset, model, criterion and optimizer
|
|
test_loader = data.get_test_loader(vocab, options)
|
|
|
|
model = models.factory(options['model'],
|
|
vocab,
|
|
cuda=True,
|
|
data_parallel=False)
|
|
|
|
print('Model has {} parameters'.format(utils.params_count(model)))
|
|
|
|
# optionally resume from a checkpoint
|
|
if os.path.isfile(options['optim']['resume']):
|
|
print("=> loading checkpoint '{}'".format(options['optim']['resume']))
|
|
checkpoint = torch.load(options['optim']['resume'])
|
|
start_epoch = checkpoint['epoch']
|
|
best_rsum = checkpoint['best_rsum']
|
|
model.load_state_dict(checkpoint['model'], False)
|
|
else:
|
|
print("=> no checkpoint found at '{}'".format(options['optim']['resume']))
|
|
|
|
# evaluate on test set
|
|
sims = engine.validate_test(test_loader, model)
|
|
|
|
# get indicators
|
|
(r1i, r5i, r10i, medri, meanri), _ = utils.acc_i2t2(sims)
|
|
logging.info("Image to text: %.1f, %.1f, %.1f, %.1f, %.1f" %
|
|
(r1i, r5i, r10i, medri, meanri))
|
|
(r1t, r5t, r10t, medrt, meanrt), _ = utils.acc_t2i2(sims)
|
|
logging.info("Text to image: %.1f, %.1f, %.1f, %.1f, %.1f" %
|
|
(r1t, r5t, r10t, medrt, meanrt))
|
|
currscore = (r1t + r5t + r10t + r1i + r5i + r10i)/6.0
|
|
|
|
all_score = "r1i:{} r5i:{} r10i:{} medri:{} meanri:{}\n r1t:{} r5t:{} r10t:{} medrt:{} meanrt:{}\n sum:{}\n ------\n".format(
|
|
r1i, r5i, r10i, medri, meanri, r1t, r5t, r10t, medrt, meanrt, currscore
|
|
)
|
|
|
|
print(all_score)
|
|
|
|
# return currscore
|
|
return [r1i, r5i, r10i, r1t, r5t, r10t, currscore]
|
|
|
|
|
|
def update_options_savepath(options, k):
|
|
updated_options = copy.deepcopy(options)
|
|
|
|
updated_options['optim']['resume'] = options['logs']['ckpt_save_path'] + options['k_fold']['experiment_name'] + "/" \
|
|
+ str(k) + "/" + options['model']['name'] + '_best.pth.tar'
|
|
# updated_options['optim']['resume'] = options['logs']['ckpt_save_path'] + options['k_fold']['experiment_name'] + "/" \
|
|
# + str(k) + "/" + 'ckpt_GAC_20_21.63.pth.tar'
|
|
return updated_options
|
|
|
|
if __name__ == '__main__':
|
|
options = parser_options()
|
|
|
|
# calc ave k results
|
|
last_score = []
|
|
for k in range(options['k_fold']['nums']):
|
|
print("=========================================")
|
|
print("Start evaluate {}th fold".format(k))
|
|
|
|
# update save path
|
|
update_options = update_options_savepath(options, k)
|
|
|
|
# run experiment
|
|
one_score = main(update_options)
|
|
print(one_score)
|
|
last_score.append(one_score)
|
|
|
|
print("Complete evaluate {}th fold".format(k))
|
|
|
|
# ave
|
|
print("===================== Ave Score ({}-fold verify) =================".format(options['k_fold']['nums']))
|
|
print(last_score)
|
|
last_score = np.average(last_score, axis=0)
|
|
print(last_score)
|
|
names = ['r1i', 'r5i', 'r10i', 'r1t', 'r5t', 'r10t', 'mr']
|
|
for name,score in zip(names, last_score):
|
|
print("{}:{}".format(name, score))
|