Graduation_Project/WZM/utils.py

441 lines
14 KiB
Python

import torch
import numpy as np
import sys
import math
from torch.autograd import Variable
from collections import OrderedDict
import torch.nn as nn
import shutil
import time
from model.utils import cosine_sim, cosine_similarity
# 从npy中读取
def load_from_npy(filename):
info = np.load(filename, allow_pickle=True)
return info
# 保存结果到txt文件
def log_to_txt( contexts=None,filename="save.txt", mark=False,encoding='UTF-8',mode='a'):
f = open(filename, mode,encoding=encoding)
if mark:
sig = "------------------------------------------------\n"
f.write(sig)
elif isinstance(contexts, dict):
tmp = ""
for c in contexts.keys():
tmp += str(c)+" | "+ str(contexts[c]) +"\n"
contexts = tmp
f.write(contexts)
else:
if isinstance(contexts,list):
tmp = ""
for c in contexts:
tmp += str(c)
contexts = tmp
else:
contexts = contexts + "\n"
f.write(contexts)
f.close()
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=0):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / (.0001 + self.count)
def __str__(self):
"""String representation for logging
"""
# for values that should be recorded exactly e.g. iteration number
if self.count == 0:
return str(self.val)
# for stats
return '%.4f (%.4f)' % (self.val, self.avg)
class LogCollector(object):
"""A collection of logging objects that can change from train to val"""
def __init__(self):
# to keep the order of logged variables deterministic
self.meters = OrderedDict()
def update(self, k, v, n=0):
# create a new meter if previously not recorded
if k not in self.meters:
self.meters[k] = AverageMeter()
self.meters[k].update(v, n)
def __str__(self):
"""Concatenate the meters in one log line
"""
s = ''
for i, (k, v) in enumerate(self.meters.items()):
if i > 0:
s += ' '
s += k + ' ' + str(v)
return s
def tb_log(self, tb_logger, prefix='', step=None):
"""Log using tensorboard
"""
for k, v in self.meters.items():
tb_logger.log_value(prefix + k, v.val, step=step)
def update_values(dict_from, dict_to):
for key, value in dict_from.items():
if isinstance(value, dict):
update_values(dict_from[key], dict_to[key])
elif value is not None:
dict_to[key] = dict_from[key]
return dict_to
def params_count(model):
count = 0
for p in model.parameters():
c = 1
for i in range(p.dim()):
c *= p.size(i)
count += c
return count
def collect_match(input):
"""change the model output to the match matrix"""
image_size = input.size(0)
text_size = input.size(1)
# match_v = torch.zeros(image_size, text_size, 1)
# match_v = match_v.view(image_size*text_size, 1)
input_ = nn.LogSoftmax(2)(input)
output = torch.index_select(input_, 2, Variable(torch.LongTensor([1])).cuda())
return output
def collect_neg(input):
""""collect the hard negative sample"""
if input.dim() != 2:
return ValueError
batch_size = input.size(0)
mask = Variable(torch.eye(batch_size)>0.5).cuda()
output = input.masked_fill_(mask, 0)
output_r = output.max(1)[0]
output_c = output.max(0)[0]
loss_n = torch.mean(output_r) + torch.mean(output_c)
return loss_n
def calcul_loss(scores, size, margin, max_violation=False):
diagonal = scores.diag().view(size, 1)
d1 = diagonal.expand_as(scores)
d2 = diagonal.t().expand_as(scores)
# compare every diagonal score to scores in its column
# caption retrieval
cost_s = (margin + scores - d1).clamp(min=0)
# compare every diagonal score to scores in its row
# image retrieval
cost_im = (margin + scores - d2).clamp(min=0)
mask = torch.eye(scores.size(0)) > .5
I = Variable(mask)
if torch.cuda.is_available():
I = I.cuda()
cost_s = cost_s.masked_fill_(I, 0)
cost_im = cost_im.masked_fill_(I, 0)
if max_violation:
cost_s = cost_s.max(1)[0]
cost_im = cost_im.max(0)[0]
return cost_s.sum() + cost_im.sum()
def acc_train(input):
predicted = input.squeeze().numpy()
batch_size = predicted.shape[0]
predicted[predicted > math.log(0.5)] = 1
predicted[predicted < math.log(0.5)] = 0
target = np.eye(batch_size)
recall = np.sum(predicted * target) / np.sum(target)
precision = np.sum(predicted * target) / np.sum(predicted)
acc = 1 - np.sum(abs(predicted - target)) / (target.shape[0] * target.shape[1])
return acc, recall, precision
def acc_i2t(input):
"""Computes the precision@k for the specified values of k of i2t"""
#input = collect_match(input).numpy()
image_size = input.shape[0]
ranks = np.zeros(image_size)
# ranks_ = np.zeros(image_size//5)
top1 = np.zeros(image_size)
for index in range(image_size):
inds = np.argsort(input[index])[::-1]
# Score
rank = 1e20
# index_ = index // 5
for i in range(5 * index, 5 * index + 5, 1):
tmp = np.where(inds == i)[0][0]
if tmp < rank:
rank = tmp
if rank == 1e20:
print('error')
ranks[index] = rank
top1[index] = inds[0]
# Compute metrics
r1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
r5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
r10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
medr = np.floor(np.median(ranks)) + 1
meanr = ranks.mean() + 1
return (r1, r5, r10, medr, meanr), (ranks, top1)
def acc_t2i(input):
"""Computes the precision@k for the specified values of k of t2i"""
#input = collect_match(input).numpy()
image_size = input.shape[0]
ranks = np.zeros(5*image_size)
top1 = np.zeros(5*image_size)
# ranks_ = np.zeros(image_size // 5)
# --> (5N(caption), N(image))
input = input.T
for index in range(image_size):
for i in range(5):
inds = np.argsort(input[5 * index + i])[::-1]
ranks[5 * index + i] = np.where(inds == index)[0][0]
top1[5 * index + i] = inds[0]
# Compute metrics
r1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
r5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
r10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
medr = np.floor(np.median(ranks)) + 1
meanr = ranks.mean() + 1
return (r1, r5, r10, medr, meanr), (ranks, top1)
def shard_dis(images, captions, model, shard_size=128, lengths=None):
"""compute image-caption pairwise distance during validation and test"""
n_im_shard = (len(images) - 1) // shard_size + 1
n_cap_shard = (len(captions) - 1) // shard_size + 1
d = np.zeros((len(images), len(captions)))
for i in range(n_im_shard):
im_start, im_end = shard_size*i, min(shard_size*(i+1), len(images))
# print("======================")
# print("im_start:",im_start)
# print("im_end:",im_end)
for j in range(n_cap_shard):
# sys.stdout.write('\r>> shard_distance batch (%d,%d)' % (i,j))
cap_start, cap_end = shard_size * j, min(shard_size * (j + 1), len(captions))
im = Variable(torch.from_numpy(images[im_start:im_end]), volatile=True).float().cuda()
s = Variable(torch.from_numpy(captions[cap_start:cap_end]), volatile=True).cuda()
l = lengths[cap_start:cap_end]
sim = model(im, s,l)
sim = sim.squeeze()
d[im_start:im_end, cap_start:cap_end] = sim.data.cpu().numpy()
sys.stdout.write('\n')
return d
def acc_i2t2(input):
"""Computes the precision@k for the specified values of k of i2t"""
#input = collect_match(input).numpy()
image_size = input.shape[0]
ranks = np.zeros(image_size)
top1 = np.zeros(image_size)
for index in range(image_size):
inds = np.argsort(input[index])[::-1]
# Score
rank = 1e20
for i in range(5 * index, 5 * index + 5, 1):
tmp = np.where(inds == i)[0][0]
if tmp < rank:
rank = tmp
ranks[index] = rank
top1[index] = inds[0]
# Compute metrics
r1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
r5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
r10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
medr = np.floor(np.median(ranks)) + 1
meanr = ranks.mean() + 1
return (r1, r5, r10, medr, meanr), (ranks, top1)
def acc_t2i2(input):
"""Computes the precision@k for the specified values of k of t2i"""
#input = collect_match(input).numpy()
image_size = input.shape[0]
ranks = np.zeros(5*image_size)
top1 = np.zeros(5*image_size)
# --> (5N(caption), N(image))
input = input.T
for index in range(image_size):
for i in range(5):
inds = np.argsort(input[5 * index + i])[::-1]
ranks[5 * index + i] = np.where(inds == index)[0][0]
top1[5 * index + i] = inds[0]
# Compute metrics
r1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
r5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
r10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
medr = np.floor(np.median(ranks)) + 1
meanr = ranks.mean() + 1
return (r1, r5, r10, medr, meanr), (ranks, top1)
def shard_dis_reg(images, captions, model, shard_size=128, lengths=None):
"""compute image-caption pairwise distance during validation and test"""
n_im_shard = (len(images) - 1) // shard_size + 1
n_cap_shard = (len(captions) - 1) // shard_size + 1
d = np.zeros((len(images), len(captions)))
for i in range(len(images)):
# im_start, im_end = shard_size*i, min(shard_size*(i+1), len(images))
im_index = i
for j in range(n_cap_shard):
# sys.stdout.write('\r>> shard_distance batch (%d,%d)' % (i,j))
cap_start, cap_end = shard_size * j, min(shard_size * (j + 1), len(captions))
s = Variable(torch.from_numpy(captions[cap_start:cap_end]), volatile=True).cuda()
im = Variable(torch.from_numpy(images[i]), volatile=True).float().unsqueeze(0).expand(len(s), 3, 256, 256).cuda()
l = lengths[cap_start:cap_end]
sim = model(im, s, l)[:, 1]
sim = sim.squeeze()
d[i, cap_start:cap_end] = sim.data.cpu().numpy()
sys.stdout.write('\n')
return d
def shard_dis_GAC(images, captions, model, shard_size=128, lengths=None):
"""compute image-caption pairwise distance during validation and test"""
# if torch.cuda.device_count() == 4:
# shard_size = 40
n_im_shard = (len(images) - 1) // shard_size + 1
n_cap_shard = (len(captions) - 1) // shard_size + 1
d = np.zeros((len(images), len(captions)))
all = []
for i in range(n_im_shard):
im_start, im_end = shard_size * i, min(shard_size*(i+1), len(images))
print("======================")
print("im_start:",im_start)
print("im_end:",im_end)
print("the len of captions:",len(captions))
for j in range(n_cap_shard):
# sys.stdout.write('\r>> shard_distance batch (%d,%d)' % (i,j))
cap_start, cap_end = shard_size * j, min(shard_size * (j + 1), len(captions))
# print("cap_start :", cap_start)
# print("cap_end :", cap_end)
with torch.no_grad():
im = Variable(torch.from_numpy(images[im_start:im_end])).float().cuda()
s = Variable(torch.from_numpy(captions[cap_start:cap_end])).cuda()
l = lengths[cap_start:cap_end]
t1 = time.time()
# calculate simularity
sim = model(im, s, l)
# visual_feature, text_feature = model(im, local_rep, local_adj, s, l)
# sim = cosine_sim(visual_feature, text_feature)
t2 = time.time()
all.append(t2-t1)
sim = sim.squeeze()
# print("sim shape : ", sim.shape)
d[im_start:im_end, cap_start:cap_end] = sim.data.cpu().numpy()
sys.stdout.write('\n')
print("infer time:",np.average(all))
return d
def save_checkpoint(state, need_save, is_best, filename, prefix='', model_name = None):
tries = 15
error = None
# deal with unstable I/O. Usually not necessary.
while tries:
try:
if need_save:
torch.save(state, prefix + filename)
if is_best:
torch.save(state, prefix + model_name +'_best.pth.tar')
except IOError as e:
error = e
tries -= 1
else:
break
print('model save {} failed, remaining {} trials'.format(filename, tries))
if not tries:
raise error
def adjust_learning_rate(options, optimizer, epoch):
"""Sets the learning rate to the initial LR
decayed by 10 every 30 epochs"""
for param_group in optimizer.param_groups:
lr = param_group['lr']
if epoch % options['optim']['lr_update_epoch'] == options['optim']['lr_update_epoch'] - 1:
lr = lr * options['optim']['lr_decay_param']
param_group['lr'] = lr
print("Current lr: {}".format(optimizer.state_dict()['param_groups'][0]['lr']))
def load_from_txt(filename, encoding="utf-8"):
f = open(filename,'r' ,encoding=encoding)
contexts = f.readlines()
return contexts