1.9 KiB
1.9 KiB
Introduction
This is Bidirectional Correct Attention Network, source code of Attend, Correct and Focus: Bidirectional Correct Attention Network for Image-Text Matching (ICIP 2021) and BCAN++: Cross-Modal Retrieval with Improved Bidirectional Correct Attention Network. It is built on top of the SCAN in Pytorch.
Requirements and Installation
We recommended the following dependencies.
- Python 3.7
- Pytorch 1.6+
- Numpy
- nltk
Download data
Download the dataset files. We use the image feature created by SCAN, downloaded here. All the data needed for reproducing the experiments in the paper, including image features and vocabularies, can be downloaded from:
wget https://scanproject.blob.core.windows.net/scan-data/data.zip
wget https://scanproject.blob.core.windows.net/scan-data/vocab.zip
Training
- Train new BCAN models: Run
train.py
:
python train.py --data_path "$DATA_PATH" --data_name "$DATA_NAME" --logger_name "$LOGGER_NAME" --model_name "$MODEL_NAME"
- Train new BCAN++ models: Run
bcan++_train.py
:
python bcan++_trian.py --data_path "$DATA_PATH" --data_name "$DATA_NAME" --logger_name "$LOGGER_NAME" --model_name "$MODEL_NAME"
Argument used to train Flickr30K models and MSCOCO models are similar with those of SCAN:
For Flickr30K:
Method | Arguments |
---|---|
BCAN-equal | --num_epochs=20 --lr_update=15 --correct_type=equal |
BCAN-prob | --num_epochs=20 --lr_update=15 --correct_type=prob |
For MSCOCO:
Method | Arguments |
---|---|
BCAN-equal | --num_epochs=15 --lr_update=8 --correct_type=equal |
BCAN-prob | --num_epochs=15 --lr_update=8 --correct_type=prob |
Evaluation
from vocab import Vocabulary
import evaluation
evaluation.evalrank("$RUN_PATH/coco_scan/model_best.pth.tar", data_path="$DATA_PATH", split="test")