Graduation_Project/WZM/test_single.py

119 lines
3.9 KiB
Python

# encoding:utf-8
# -----------------------------------------------------------
# "Remote Sensing Cross-Modal Text-Image Retrieval Based on Global and Local Information"
# Yuan, Zhiqiang and Zhang, Wenkai and Changyuan Tian and Xuee, Rong and Zhengyuan Zhang and Wang, Hongqi and Fu, Kun and Sun, Xian
# Writen by YuanZhiqiang, 2021. Our code is depended on AMFMN
# ------------------------------------------------------------
import os, random, copy
import numpy as np
import torch
import torch.nn as nn
import argparse
import yaml
import shutil
import tensorboard_logger as tb_logger
import logging
import click
import utils
import data
import engine
from vocab import deserialize_vocab
def parser_options():
# Hyper Parameters setting
parser = argparse.ArgumentParser()
parser.add_argument('--path_opt', default='option/RSITMD/ablation_q/RSITMD_GAC_decay0.5_m0.2_q0.1.yaml', type=str,
help='path to a yaml options file')
parser.add_argument('--resume', default='checkpoint/RSITMD_GAC_decay0.5_m0.2_q0.1/3/GAC_best.pth.tar', type=str,
help='path to a yaml options file')
opt = parser.parse_args()
# load model options
with open(opt.path_opt, 'r') as handle:
options = yaml.load(handle)
options['optim']['resume'] = opt.resume
return options
def main(options):
# choose model
if options['model']['name'] == "GAC":
from model import GAC as models
elif options['model']['name'] == "GAC_mca":
from model import GAC_mca as models
else:
raise NotImplementedError
# make vocab
vocab = deserialize_vocab(options['dataset']['vocab_path'])
vocab_word = sorted(vocab.word2idx.items(), key=lambda x: x[1], reverse=False)
vocab_word = [tup[0] for tup in vocab_word]
# Create dataset, model, criterion and optimizer
test_loader = data.get_test_loader(vocab, options)
model = models.factory(options['model'],
vocab_word,
cuda=True,
data_parallel=False)
print('Model has {} parameters'.format(utils.params_count(model)))
# optionally resume from a checkpoint
if os.path.isfile(options['optim']['resume']):
print("=> loading checkpoint '{}'".format(options['optim']['resume']))
checkpoint = torch.load(options['optim']['resume'])
start_epoch = checkpoint['epoch']
best_rsum = checkpoint['best_rsum']
model.load_state_dict(checkpoint['model'])
else:
print("=> no checkpoint found at '{}'".format(options['optim']['resume']))
# evaluate on test set
sims = engine.validate_test(test_loader, model)
return sims
def update_options_savepath(options, k):
updated_options = copy.deepcopy(options)
updated_options['optim']['resume'] = options['logs']['ckpt_save_path'] + options['k_fold']['experiment_name'] + "/" \
+ str(k) + "/" + options['model']['name'] + '_best.pth.tar'
return updated_options
if __name__ == '__main__':
options = parser_options()
# run experiment
one_sims = main(options)
print(one_sims)
# import mytools
# mytools.save_to_npy(one_sims, "rsicd_2.npy")
# # ave
# last_sims = one_sims
# # get indicators
# (r1i, r5i, r10i, medri, meanri), _ = utils.acc_i2t2(last_sims)
# logging.info("Image to text: %.1f, %.1f, %.1f, %.1f, %.1f" %
# (r1i, r5i, r10i, medri, meanri))
# (r1t, r5t, r10t, medrt, meanrt), _ = utils.acc_t2i2(last_sims)
# logging.info("Text to image: %.1f, %.1f, %.1f, %.1f, %.1f" %
# (r1t, r5t, r10t, medrt, meanrt))
# currscore = (r1t + r5t + r10t + r1i + r5i + r10i)/6.0
# all_score = "r1i:{} r5i:{} r10i:{} medri:{} meanri:{}\n r1t:{} r5t:{} r10t:{} medrt:{} meanrt:{}\n sum:{}\n ------\n".format(
# r1i, r5i, r10i, medri, meanri, r1t, r5t, r10t, medrt, meanrt, currscore
# )
# print(all_score)