Mamba_test/Mamba/mamba-main/mamba_ssm/modules/mamba2.py

360 lines
16 KiB
Python
Raw Normal View History

2024-07-30 17:33:04 +08:00
# Copyright (c) 2024, Tri Dao, Albert Gu.
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
try:
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
except ImportError:
causal_conv1d_fn, causal_conv1d_update = None, None
try:
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
except ImportError:
selective_state_update = None
from mamba_ssm.ops.triton.layernorm_gated import RMSNorm as RMSNormGated
from mamba_ssm.distributed.tensor_parallel import ColumnParallelLinear, RowParallelLinear
from mamba_ssm.distributed.distributed_utils import all_reduce, reduce_scatter
from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined
from mamba_ssm.ops.triton.ssd_combined import mamba_split_conv1d_scan_combined
class Mamba2(nn.Module):
def __init__(
self,
d_model,
d_state=128,
d_conv=4,
conv_init=None,
expand=2,
headdim=64,
d_ssm=None, # If not None, we only apply SSM on this many dimensions, the rest uses gated MLP
ngroups=1,
A_init_range=(1, 16),
D_has_hdim=False,
rmsnorm=True,
norm_before_gate=False,
dt_min=0.001,
dt_max=0.1,
dt_init_floor=1e-4,
dt_limit=(0.0, float("inf")),
bias=False,
conv_bias=True,
# Fused kernel and sharding options
chunk_size=256,
use_mem_eff_path=True,
layer_idx=None, # Absorb kwarg for general module
process_group=None,
sequence_parallel=True,
device=None,
dtype=None,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.d_model = d_model
self.d_state = d_state
self.d_conv = d_conv
self.conv_init = conv_init
self.expand = expand
self.process_group = process_group
self.sequence_parallel = sequence_parallel
self.world_size = 1 if process_group is None else process_group.size()
self.local_rank = 0 if process_group is None else process_group.rank()
self.d_inner = (self.expand * self.d_model) // self.world_size
assert self.d_inner * self.world_size == self.expand * self.d_model
self.headdim = headdim
self.d_ssm = self.d_inner if d_ssm is None else d_ssm // self.world_size
assert ngroups % self.world_size == 0
self.ngroups = ngroups // self.world_size
assert self.d_ssm % self.headdim == 0
self.nheads = self.d_ssm // self.headdim
self.D_has_hdim = D_has_hdim
self.rmsnorm = rmsnorm
self.norm_before_gate = norm_before_gate
self.dt_limit = dt_limit
self.activation = "silu"
self.chunk_size = chunk_size
self.use_mem_eff_path = use_mem_eff_path
self.layer_idx = layer_idx
# Order: [z, x, B, C, dt]
d_in_proj = 2 * self.d_inner + 2 * self.ngroups * self.d_state + self.nheads
if self.process_group is None:
self.in_proj = nn.Linear(self.d_model, d_in_proj, bias=bias, **factory_kwargs)
else:
self.in_proj = ColumnParallelLinear(self.d_model, d_in_proj * self.world_size, bias=bias,
process_group=self.process_group, sequence_parallel=self.sequence_parallel,
**factory_kwargs)
conv_dim = self.d_ssm + 2 * self.ngroups * self.d_state
self.conv1d = nn.Conv1d(
in_channels=conv_dim,
out_channels=conv_dim,
bias=conv_bias,
kernel_size=d_conv,
groups=conv_dim,
padding=d_conv - 1,
**factory_kwargs,
)
if self.conv_init is not None:
nn.init.uniform_(self.conv1d.weight, -self.conv_init, self.conv_init)
self.act = nn.SiLU()
# Initialize log dt bias
dt = torch.exp(
torch.rand(self.nheads, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min))
+ math.log(dt_min)
)
dt = torch.clamp(dt, min=dt_init_floor)
# Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
inv_dt = dt + torch.log(-torch.expm1(-dt))
self.dt_bias = nn.Parameter(inv_dt)
# Just to be explicit. Without this we already don't put wd on dt_bias because of the check
# name.endswith("bias") in param_grouping.py
self.dt_bias._no_weight_decay = True
assert A_init_range[0] > 0 and A_init_range[1] >= A_init_range[0]
A = torch.empty(self.nheads, dtype=torch.float32, device=device).uniform_(*A_init_range)
A_log = torch.log(A).to(dtype=dtype)
self.A_log = nn.Parameter(A_log)
self.A_log._no_weight_decay = True
# D "skip" parameter
self.D = nn.Parameter(torch.ones(self.d_ssm if self.D_has_hdim else self.nheads, device=device))
self.D._no_weight_decay = True
if self.rmsnorm:
assert RMSNormGated is not None
self.norm = RMSNormGated(self.d_ssm, eps=1e-5, norm_before_gate=self.norm_before_gate,
group_size=self.d_ssm // ngroups, **factory_kwargs)
if self.process_group is None:
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
else:
self.out_proj = RowParallelLinear(self.d_inner * self.world_size, self.d_model, bias=bias,
process_group=self.process_group, sequence_parallel=self.sequence_parallel,
**factory_kwargs)
def forward(self, u, seqlen=None, seq_idx=None, inference_params=None):
"""
u: (batch, seqlen, hidden_dim) if seqlen=None.
If seqlen is not None, u is (batch * seqlen, hidden_dim). This is so that when we
split u during sequence parallel, we split the batch * seqlen dimension
(in case batch is small).
Returns: same shape as u
"""
seqlen_og = seqlen
if seqlen is None:
batch, seqlen, dim = u.shape
else:
batch_seqlen, dim = u.shape
batch = batch_seqlen // seqlen
conv_state, ssm_state = None, None
if inference_params is not None:
conv_state, ssm_state = self._get_states_from_cache(inference_params, batch)
if inference_params.seqlen_offset > 0:
# The states are updated inplace
out, _, _ = self.step(u, conv_state, ssm_state)
return out
zxbcdt = self.in_proj(u) # (B, L, d_in_proj) or (B * L, d_in_proj)
if seqlen_og is not None:
zxbcdt = rearrange(zxbcdt, "(b l) d -> b l d", l=seqlen)
# If the model is loaded in fp16, without the .float() here, A might be -inf
A = -torch.exp(self.A_log.float()) # (nheads) or (d_inner, d_state)
dt_limit_kwargs = {} if self.dt_limit == (0.0, float("inf")) else dict(dt_limit=self.dt_limit)
if self.use_mem_eff_path and inference_params is None:
out = mamba_split_conv1d_scan_combined(
zxbcdt,
rearrange(self.conv1d.weight, "d 1 w -> d w"),
self.conv1d.bias,
self.dt_bias,
A,
D=rearrange(self.D, "(h p) -> h p", p=self.headdim) if self.D_has_hdim else self.D,
chunk_size=self.chunk_size,
seq_idx=seq_idx,
activation=self.activation,
rmsnorm_weight=self.norm.weight if self.rmsnorm else None,
rmsnorm_eps=self.norm.eps if self.rmsnorm else 1e-6,
outproj_weight=self.out_proj.weight,
outproj_bias=self.out_proj.bias,
headdim=None if self.D_has_hdim else self.headdim,
ngroups=self.ngroups,
norm_before_gate=self.norm_before_gate,
**dt_limit_kwargs,
)
if seqlen_og is not None:
out = rearrange(out, "b l d -> (b l) d")
if self.process_group is not None:
reduce_fn = reduce_scatter if self.sequence_parallel else all_reduce
out = reduce_fn(out, self.process_group)
else:
d_mlp = (zxbcdt.shape[-1] - 2 * self.d_ssm - 2 * self.ngroups * self.d_state - self.nheads) // 2
z0, x0, z, xBC, dt = torch.split(
zxbcdt,
[d_mlp, d_mlp, self.d_ssm, self.d_ssm + 2 * self.ngroups * self.d_state, self.nheads],
dim=-1
)
if conv_state is not None:
# If we just take xBC[:, :, -self.d_conv :], it will error if seqlen < self.d_conv
# Instead F.pad will pad with zeros if seqlen < self.d_conv, and truncate otherwise.
xBC_t = rearrange(xBC, "b l d -> b d l")
conv_state.copy_(F.pad(xBC_t, (self.d_conv - xBC_t.shape[-1], 0))) # Update state (B D W)
assert self.activation in ["silu", "swish"]
if causal_conv1d_fn is None or self.activation not in ["silu", "swish"]:
xBC = self.act(
self.conv1d(xBC.transpose(1, 2)).transpose(1, 2)
) # (B, L, self.d_ssm + 2 * ngroups * d_state)
else:
xBC = causal_conv1d_fn(
xBC.transpose(1, 2),
rearrange(self.conv1d.weight, "d 1 w -> d w"),
bias=self.conv1d.bias,
activation=self.activation,
).transpose(1, 2)
x, B, C = torch.split(xBC, [self.d_ssm, self.ngroups * self.d_state, self.ngroups * self.d_state], dim=-1)
y = mamba_chunk_scan_combined(
rearrange(x, "b l (h p) -> b l h p", p=self.headdim),
dt,
A,
rearrange(B, "b l (g n) -> b l g n", g=self.ngroups),
rearrange(C, "b l (g n) -> b l g n", g=self.ngroups),
chunk_size=self.chunk_size,
D=rearrange(self.D, "(h p) -> h p", p=self.headdim) if self.D_has_hdim else self.D,
z=rearrange(z, "b l (h p) -> b l h p", p=self.headdim) if not self.rmsnorm else None,
dt_bias=self.dt_bias,
dt_softplus=True,
seq_idx=seq_idx,
**dt_limit_kwargs,
return_final_states=ssm_state is not None,
)
if ssm_state is not None:
y, last_state = y
ssm_state.copy_(last_state)
y = rearrange(y, "b l h p -> b l (h p)")
if self.rmsnorm:
y = self.norm(y, z)
if d_mlp > 0:
y = torch.cat([F.silu(z0) * x0, y], dim=-1)
if seqlen_og is not None:
y = rearrange(y, "b l d -> (b l) d")
out = self.out_proj(y)
return out
def step(self, hidden_states, conv_state, ssm_state):
dtype = hidden_states.dtype
assert hidden_states.shape[1] == 1, "Only support decoding with 1 token at a time for now"
zxbcdt = self.in_proj(hidden_states.squeeze(1)) # (B 2D)
d_mlp = (zxbcdt.shape[-1] - 2 * self.d_ssm - 2 * self.ngroups * self.d_state - self.nheads) // 2
z0, x0, z, xBC, dt = torch.split(
zxbcdt,
[d_mlp, d_mlp, self.d_ssm, self.d_ssm + 2 * self.ngroups * self.d_state, self.nheads],
dim=-1
)
# Conv step
if causal_conv1d_update is None:
conv_state.copy_(torch.roll(conv_state, shifts=-1, dims=-1)) # Update state (B D W)
conv_state[:, :, -1] = xBC
xBC = torch.sum(conv_state * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1) # (B D)
if self.conv1d.bias is not None:
xBC = xBC + self.conv1d.bias
xBC = self.act(xBC).to(dtype=dtype)
else:
xBC = causal_conv1d_update(
xBC,
conv_state,
rearrange(self.conv1d.weight, "d 1 w -> d w"),
self.conv1d.bias,
self.activation,
)
x, B, C = torch.split(xBC, [self.d_ssm, self.ngroups * self.d_state, self.ngroups * self.d_state], dim=-1)
A = -torch.exp(self.A_log.float()) # (nheads,)
# SSM step
if selective_state_update is None:
assert self.ngroups == 1, "Only support ngroups=1 for this inference code path"
# Discretize A and B
dt = F.softplus(dt + self.dt_bias.to(dtype=dt.dtype)) # (batch, nheads)
dA = torch.exp(dt * A) # (batch, nheads)
x = rearrange(x, "b (h p) -> b h p", p=self.headdim)
dBx = torch.einsum("bh,bn,bhp->bhpn", dt, B, x)
ssm_state.copy_(ssm_state * rearrange(dA, "b h -> b h 1 1") + dBx)
y = torch.einsum("bhpn,bn->bhp", ssm_state.to(dtype), C)
y = y + rearrange(self.D.to(dtype), "h -> h 1") * x
y = rearrange(y, "b h p -> b (h p)")
if not self.rmsnorm:
y = y * self.act(z) # (B D)
else:
A = repeat(A, "h -> h p n", p=self.headdim, n=self.d_state).to(dtype=torch.float32)
dt = repeat(dt, "b h -> b h p", p=self.headdim)
dt_bias = repeat(self.dt_bias, "h -> h p", p=self.headdim)
D = repeat(self.D, "h -> h p", p=self.headdim)
B = rearrange(B, "b (g n) -> b g n", g=self.ngroups)
C = rearrange(C, "b (g n) -> b g n", g=self.ngroups)
x_reshaped = rearrange(x, "b (h p) -> b h p", p=self.headdim)
if not self.rmsnorm:
z = rearrange(z, "b (h p) -> b h p", p=self.headdim)
y = selective_state_update(
ssm_state, x_reshaped, dt, A, B, C, D, z=z if not self.rmsnorm else None,
dt_bias=dt_bias, dt_softplus=True
)
y = rearrange(y, "b h p -> b (h p)")
if self.rmsnorm:
y = self.norm(y, z)
if d_mlp > 0:
y = torch.cat([F.silu(z0) * x0, y], dim=-1)
out = self.out_proj(y)
return out.unsqueeze(1), conv_state, ssm_state
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
device = self.out_proj.weight.device
conv_dtype = self.conv1d.weight.dtype if dtype is None else dtype
conv_state = torch.zeros(
batch_size, self.conv1d.weight.shape[0], self.d_conv, device=device, dtype=conv_dtype
)
ssm_dtype = self.in_proj.weight.dtype if dtype is None else dtype
ssm_state = torch.zeros(
batch_size, self.nheads, self.headdim, self.d_state, device=device, dtype=ssm_dtype
)
return conv_state, ssm_state
def _get_states_from_cache(self, inference_params, batch_size, initialize_states=False):
assert self.layer_idx is not None
if self.layer_idx not in inference_params.key_value_memory_dict:
batch_shape = (batch_size,)
conv_state = torch.zeros(
batch_size,
self.conv1d.weight.shape[0],
self.d_conv,
device=self.conv1d.weight.device,
dtype=self.conv1d.weight.dtype,
)
ssm_state = torch.zeros(
batch_size,
self.nheads,
self.headdim,
self.d_state,
device=self.in_proj.weight.device,
dtype=self.in_proj.weight.dtype,
)
inference_params.key_value_memory_dict[self.layer_idx] = (conv_state, ssm_state)
else:
conv_state, ssm_state = inference_params.key_value_memory_dict[self.layer_idx]
# TODO: What if batch size changes between generation, and we reuse the same states?
if initialize_states:
conv_state.zero_()
ssm_state.zero_()
return conv_state, ssm_state