Mamba_test/Mamba/mamba-main/mamba_ssm/modules/mha.py

290 lines
13 KiB
Python
Raw Normal View History

2024-07-30 17:33:04 +08:00
# Copyright (c) 2024, Tri Dao, Albert Gu.
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
try:
from flash_attn import flash_attn_with_kvcache
except ImportError:
flash_attn_with_kvcache = None
try:
from flash_attn.layers.rotary import RotaryEmbedding
except ImportError:
RotaryEmbedding = None
try:
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
except ImportError:
causal_conv1d_fn, causal_conv1d_update = None, None
def _update_kv_cache(kv, inference_params, layer_idx):
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
# Pre-allocate memory for key-values for inference.
num_heads, head_dim = kv.shape[-2:]
assert layer_idx in inference_params.key_value_memory_dict
kv_cache, _ = inference_params.key_value_memory_dict[layer_idx]
# Adjust key and value for inference
batch_start = inference_params.batch_size_offset
batch_end = batch_start + kv.shape[0]
sequence_start = inference_params.seqlen_offset
sequence_end = sequence_start + kv.shape[1]
assert batch_end <= kv_cache.shape[0]
assert sequence_end <= kv_cache.shape[1]
assert kv_cache is not None
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
return kv_cache[batch_start:batch_end, :sequence_end, ...]
class MHA(nn.Module):
"""Multi-head self-attention and cross-attention"""
def __init__(
self,
embed_dim,
num_heads,
num_heads_kv=None,
head_dim=None, # If None, use embed_dim // num_heads
mlp_dim=0,
qkv_proj_bias=True,
out_proj_bias=True,
softmax_scale=None,
causal=False,
layer_idx=None,
d_conv=0,
rotary_emb_dim=0,
rotary_emb_base=10000.0,
rotary_emb_interleaved=False,
device=None,
dtype=None,
) -> None:
"""
num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads.
return_residual: whether to return the input x along with the output. This is for
performance reason: for post-norm architecture, returning the input allows us
to fuse the backward of nn.Linear with the residual connection.
"""
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.embed_dim = embed_dim
self.layer_idx = layer_idx
self.d_conv = d_conv
self.rotary_emb_dim = rotary_emb_dim
self.softmax_scale = softmax_scale
self.causal = causal
self.num_heads = num_heads
self.num_heads_kv = num_heads_kv if num_heads_kv is not None else num_heads
assert (
self.num_heads % self.num_heads_kv == 0
), "num_heads must be divisible by num_heads_kv"
if head_dim is None:
assert self.embed_dim % num_heads == 0, "embed_dim must be divisible by num_heads"
self.head_dim = head_dim if head_dim is not None else self.embed_dim // num_heads
self.mlp_dim = math.ceil(mlp_dim / 256) * 256
qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
out_dim = self.head_dim * self.num_heads
if self.rotary_emb_dim > 0:
assert RotaryEmbedding is not None, "rotary requires flash_attn to be installed"
self.rotary_emb = RotaryEmbedding(
self.rotary_emb_dim,
base=rotary_emb_base,
interleaved=rotary_emb_interleaved,
device=device,
)
self.in_proj = nn.Linear(embed_dim, qkv_dim + self.mlp_dim, bias=qkv_proj_bias, **factory_kwargs)
if self.d_conv > 0:
self.conv1d = nn.Conv1d(
qkv_dim, qkv_dim, kernel_size=self.d_conv, padding=self.d_conv - 1, groups=qkv_dim,
**factory_kwargs
)
self.out_proj = nn.Linear(out_dim + self.mlp_dim // 2, embed_dim, bias=out_proj_bias, **factory_kwargs)
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None):
dtype = self.out_proj.weight.dtype if dtype is None else dtype
device = self.out_proj.weight.device
if self.d_conv > 0:
conv_state = torch.zeros(
batch_size, self.conv1d.weight.shape[0], self.d_conv, device=device, dtype=dtype
)
else:
conv_state = None
kv_cache = torch.empty(
batch_size, max_seqlen, 2, self.num_heads_kv, self.head_dim, dtype=dtype, device=device,
)
return kv_cache, conv_state
def _update_kv_cache(self, kv, inference_params):
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
assert self.layer_idx is not None, "Generation requires layer_idx in the constructor"
return _update_kv_cache(kv, inference_params, self.layer_idx)
def _apply_rotary_update_kvcache_attention(self, q, kv, inference_params):
"""
Fast path that combine 3 steps: apply rotary to Q and K, update kv cache, and apply attention.
q: (batch_size, seqlen_q, nheads, head_dim)
kv: (batch_size, seqlen_k, 2, nheads_kv, head_dim)
"""
assert inference_params is not None and inference_params.seqlen_offset > 0
if self.rotary_emb_dim > 0:
self.rotary_emb._update_cos_sin_cache(
inference_params.max_seqlen, device=q.device, dtype=q.dtype
)
rotary_cos, rotary_sin = self.rotary_emb._cos_cached, self.rotary_emb._sin_cached
else:
rotary_cos, rotary_sin = None, None
batch = q.shape[0]
kv_cache, _ = inference_params.key_value_memory_dict[self.layer_idx]
kv_cache = kv_cache[:batch]
cache_seqlens = (
inference_params.lengths_per_sample[:batch]
if inference_params.lengths_per_sample is not None
else inference_params.seqlen_offset
)
assert flash_attn_with_kvcache is not None, "flash_attn must be installed"
context = flash_attn_with_kvcache(
q,
kv_cache[:, :, 0],
kv_cache[:, :, 1],
kv[:, :, 0],
kv[:, :, 1],
rotary_cos=rotary_cos,
rotary_sin=rotary_sin,
cache_seqlens=cache_seqlens,
softmax_scale=self.softmax_scale,
causal=self.causal,
rotary_interleaved=self.rotary_emb.interleaved if self.rotary_emb_dim > 0 else False,
)
return context
def _update_kvcache_attention(self, q, kv, inference_params):
"""Write kv to inference_params, then do attention"""
if (
inference_params.seqlen_offset == 0
or flash_attn_with_kvcache is None
):
# TODO: this only uses seqlen_offset and not lengths_per_sample.
kv = self._update_kv_cache(kv, inference_params)
k, v = kv.unbind(dim=-3)
return F.scaled_dot_product_attention(
q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=self.causal, scale=self.softmax_scale
).transpose(1, 2)
else:
batch = q.shape[0]
kv_cache = inference_params.key_value_memory_dict[self.layer_idx][:batch]
cache_seqlens = (
inference_params.lengths_per_sample[:batch]
if inference_params.lengths_per_sample is not None
else inference_params.seqlen_offset
)
return flash_attn_with_kvcache(
q,
kv_cache[:, :, 0],
kv_cache[:, :, 1],
kv[:, :, 0],
kv[:, :, 1],
cache_seqlens=cache_seqlens,
softmax_scale=self.softmax_scale,
causal=self.causal,
)
def forward(self, x, inference_params=None):
"""
Arguments:
x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if
cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total
is the is the sum of the sequence lengths in the batch.
inference_params: for generation. Adapted from Megatron-LM (and Apex)
https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470
"""
if inference_params is not None and self.layer_idx not in inference_params.key_value_memory_dict:
inference_params.key_value_memory_dict[self.layer_idx] = self.allocate_inference_cache(
x.shape[0], inference_params.max_seqlen, dtype=x.dtype
)
seqlen_offset = (
0
if inference_params is None
else (
inference_params.lengths_per_sample
if inference_params.lengths_per_sample is not None
else inference_params.seqlen_offset
)
)
rotary_max_seqlen = inference_params.max_seqlen if inference_params is not None else None
qkv = self.in_proj(x)
if self.mlp_dim > 0:
qkv, x_mlp = qkv.split([qkv.shape[-1] - self.mlp_dim, self.mlp_dim], dim=-1)
x_mlp_up, x_mlp_gate = x_mlp.chunk(2, dim=-1)
x_mlp = x_mlp_up * F.silu(x_mlp_gate)
if self.d_conv > 0:
# The inference code for conv1d is pretty messy, should clean it up
if (inference_params is None or inference_params.seqlen_offset == 0):
if causal_conv1d_fn is None:
qkv = rearrange(
self.conv1d(rearrange(qkv, "b s d -> b d s"))[..., :-(self.d_conv - 1)], "b d s -> b s d"
).contiguous()
else:
qkv = causal_conv1d_fn(
qkv.transpose(1, 2),
rearrange(self.conv1d.weight, "d 1 w -> d w"),
self.conv1d.bias
).transpose(1, 2)
if inference_params is not None:
_, conv_state = inference_params.key_value_memory_dict[self.layer_idx]
# If we just take qkv[:, :, -self.d_conv :], it will error if seqlen < self.d_conv
# Instead F.pad will pad with zeros if seqlen < self.d_conv, and truncate otherwise.
qkv_t = rearrange(qkv, "b l d -> b d l")
conv_state.copy_(F.pad(qkv_t, (self.d_conv - qkv_t.shape[-1], 0))) # Update state (B D W)
else:
_, conv_state = inference_params.key_value_memory_dict[self.layer_idx]
assert qkv.shape[1] == 1, "Only support decoding with 1 token at a time for now"
qkv = qkv.squeeze(1)
# Conv step
if causal_conv1d_update is None:
conv_state.copy_(torch.roll(conv_state, shifts=-1, dims=-1)) # Update state (B D W)
conv_state[:, :, -1] = qkv
qkv = torch.sum(conv_state * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1) # (B D)
if self.conv1d.bias is not None:
qkv = qkv + self.conv1d.bias
else:
qkv = causal_conv1d_update(
qkv,
conv_state,
rearrange(self.conv1d.weight, "d 1 w -> d w"),
self.conv1d.bias
)
qkv = qkv.unsqueeze(1)
q, kv = qkv.split([self.num_heads * self.head_dim, self.num_heads_kv * 2 * self.head_dim], dim=-1)
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
if (
inference_params is None
or inference_params.seqlen_offset == 0
or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0)
):
if self.rotary_emb_dim > 0:
q, kv = self.rotary_emb(
q, kv, seqlen_offset=seqlen_offset, max_seqlen=rotary_max_seqlen
)
if inference_params is None:
k, v = kv.unbind(dim=-3)
context = F.scaled_dot_product_attention(
q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=self.causal, scale=self.softmax_scale
).transpose(1, 2)
else:
context = self._update_kvcache_attention(q, kv, inference_params)
else:
context = self._apply_rotary_update_kvcache_attention(q, kv, inference_params)
context = rearrange(context, "... h d -> ... (h d)")
if self.mlp_dim > 0:
context = torch.cat([context, x_mlp], dim=-1)
out = self.out_proj(context)
return out