# Copyright (c) 2023, Tri Dao, Albert Gu. import math from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from einops import rearrange, repeat from mamba_ssm.ops.selective_scan_interface import selective_scan_fn, mamba_inner_fn try:#引入加速卷积 from causal_conv1d import causal_conv1d_fn, causal_conv1d_update except ImportError: causal_conv1d_fn, causal_conv1d_update = None, None try: from mamba_ssm.ops.triton.selective_state_update import selective_state_update except ImportError: selective_state_update = None try: from mamba_ssm.ops.triton.layer_norm import RMSNorm, layer_norm_fn, rms_norm_fn except ImportError: RMSNorm, layer_norm_fn, rms_norm_fn = None, None, None class Mamba(nn.Module): def __init__( self, d_model, d_state=16, d_conv=4,#卷积核的大小 expand=2,#意味着d_inner 是 d_model的两倍 dt_rank="auto", dt_min=0.001, dt_max=0.1, dt_init="random", dt_scale=1.0, dt_init_floor=1e-4, conv_bias=True, bias=False, use_fast_path=True, # Fused kernel options layer_idx=None, device=None, dtype=None, ): factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.d_model = d_model self.d_state = d_state self.d_conv = d_conv self.expand = expand self.d_inner = int(self.expand * self.d_model) self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank self.use_fast_path = use_fast_path self.layer_idx = layer_idx self.in_proj = nn.Linear(self.d_model, self.d_inner * 2, bias=bias, **factory_kwargs) #nn.Conv1d的实例化 self.conv1d = nn.Conv1d( in_channels=self.d_inner, out_channels=self.d_inner, bias=conv_bias, kernel_size=d_conv, groups=self.d_inner, padding=d_conv - 1, **factory_kwargs, ) self.activation = "silu" self.act = nn.SiLU() self.x_proj = nn.Linear( self.d_inner, self.dt_rank + self.d_state * 2, bias=False, **factory_kwargs ) self.dt_proj = nn.Linear(self.dt_rank, self.d_inner, bias=True, **factory_kwargs) # Initialize special dt projection to preserve variance at initialization dt_init_std = self.dt_rank**-0.5 * dt_scale if dt_init == "constant": nn.init.constant_(self.dt_proj.weight, dt_init_std) elif dt_init == "random": nn.init.uniform_(self.dt_proj.weight, -dt_init_std, dt_init_std) else: raise NotImplementedError # Initialize dt bias so that F.softplus(dt_bias) is between dt_min and dt_max dt = torch.exp( torch.rand(self.d_inner, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min)) + math.log(dt_min) ).clamp(min=dt_init_floor) # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759 inv_dt = dt + torch.log(-torch.expm1(-dt)) with torch.no_grad(): self.dt_proj.bias.copy_(inv_dt) # Our initialization would set all Linear.bias to zero, need to mark this one as _no_reinit self.dt_proj.bias._no_reinit = True # S4D real initialization A = repeat( torch.arange(1, self.d_state + 1, dtype=torch.float32, device=device), "n -> d n", d=self.d_inner, ).contiguous() A_log = torch.log(A) # Keep A_log in fp32 self.A_log = nn.Parameter(A_log) self.A_log._no_weight_decay = True # D "skip" parameter self.D = nn.Parameter(torch.ones(self.d_inner, device=device)) # Keep in fp32 self.D._no_weight_decay = True self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs) # 前向传播,包括各个计算模块的处理; def forward(self, hidden_states, inference_params=None): """ hidden_states: (B, L, D) Returns: same shape as hidden_states """ batch, seqlen, dim = hidden_states.shape conv_state, ssm_state = None, None if inference_params is not None:#只在推理的时候应用step conv_state, ssm_state = self._get_states_from_cache(inference_params, batch) if inference_params.seqlen_offset > 0: # The states are updated inplace # 将embedding隐藏状态传入step函数 out, _, _ = self.step(hidden_states, conv_state, ssm_state) return out # We do matmul and transpose BLH -> HBL at the same time xz = rearrange( self.in_proj.weight @ rearrange(hidden_states, "b l d -> d (b l)"), "d (b l) -> b d l", l=seqlen, ) if self.in_proj.bias is not None: xz = xz + rearrange(self.in_proj.bias.to(dtype=xz.dtype), "d -> d 1") A = -torch.exp(self.A_log.float()) # (d_inner, d_state) # In the backward pass we write dx and dz next to each other to avoid torch.cat if self.use_fast_path and causal_conv1d_fn is not None and inference_params is None: # Doesn't support outputting the states #前向转播:快速路径(常规路径),提高计算效率 out = mamba_inner_fn(#该函数做前向反向传播 xz, self.conv1d.weight, self.conv1d.bias, self.x_proj.weight, self.dt_proj.weight, self.out_proj.weight, self.out_proj.bias, A, None, # input-dependent B None, # input-dependent C self.D.float(), delta_bias=self.dt_proj.bias.float(), delta_softplus=True, ) else:#常规路径 x, z = xz.chunk(2, dim=1) # Compute short convolution if conv_state is not None: # If we just take x[:, :, -self.d_conv :], it will error if seqlen < self.d_conv # Instead F.pad will pad with zeros if seqlen < self.d_conv, and truncate otherwise. conv_state.copy_(F.pad(x, (self.d_conv - x.shape[-1], 0))) # Update state (B D W) #检查是否有因果卷积 if causal_conv1d_fn is None: x = self.act(self.conv1d(x)[..., :seqlen]) else: assert self.activation in ["silu", "swish"] x = causal_conv1d_fn( x=x, weight=rearrange(self.conv1d.weight, "d 1 w -> d w"), bias=self.conv1d.bias, activation=self.activation, ) # We're careful here about the layout, to avoid extra transposes. # We want dt to have d as the slowest moving dimension # and L as the fastest moving dimension, since those are what the ssm_scan kernel expects. x_dbl = self.x_proj(rearrange(x, "b d l -> (b l) d")) # (bl d) dt, B, C = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=-1) dt = self.dt_proj.weight @ dt.t() dt = rearrange(dt, "d (b l) -> b d l", l=seqlen) B = rearrange(B, "(b l) dstate -> b dstate l", l=seqlen).contiguous() C = rearrange(C, "(b l) dstate -> b dstate l", l=seqlen).contiguous() assert self.activation in ["silu", "swish"] y = selective_scan_fn( x, dt, A, B, C, self.D.float(), z=z, delta_bias=self.dt_proj.bias.float(), delta_softplus=True, return_last_state=ssm_state is not None, ) if ssm_state is not None: y, last_state = y ssm_state.copy_(last_state) y = rearrange(y, "b d l -> b l d") out = self.out_proj(y) return out # step 方法用于**状态空间**解码过程中的单步更新,允许一个接一个地生成序列的下一个元素。 def step(self, hidden_states, conv_state, ssm_state): dtype = hidden_states.dtype assert hidden_states.shape[1] == 1, "Only support decoding with 1 token at a time for now" # hidden_states经过in_proj的处理 xz = self.in_proj(hidden_states.squeeze(1)) # (B 2D) # 拆分xz,x、z都是d_inner的维度 x, z = xz.chunk(2, dim=-1) # (B D) # Conv step 卷积步骤,判断是否导入causal_conv1d进行卷积加速 if causal_conv1d_update is None: conv_state.copy_(torch.roll(conv_state, shifts=-1, dims=-1)) # Update state (B D W) conv_state[:, :, -1] = x x = torch.sum(conv_state * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1) # (B D) if self.conv1d.bias is not None: x = x + self.conv1d.bias x = self.act(x).to(dtype=dtype) else: x = causal_conv1d_update( x, conv_state, rearrange(self.conv1d.weight, "d 1 w -> d w"), self.conv1d.bias, self.activation, ) x_db = self.x_proj(x) # (B dt_rank+2*d_state) dt, B, C = torch.split(x_db, [self.dt_rank, self.d_state, self.d_state], dim=-1) # Don't add dt_bias here dt = F.linear(dt, self.dt_proj.weight) # (B d_inner) A = -torch.exp(self.A_log.float()) # (d_inner, d_state) # SSM step if selective_state_update is None: # Discretize A and B dt = F.softplus(dt + self.dt_proj.bias.to(dtype=dt.dtype)) dA = torch.exp(torch.einsum("bd,dn->bdn", dt, A)) dB = torch.einsum("bd,bn->bdn", dt, B) ssm_state.copy_(ssm_state * dA + rearrange(x, "b d -> b d 1") * dB) y = torch.einsum("bdn,bn->bd", ssm_state.to(dtype), C) y = y + self.D.to(dtype) * x y = y * self.act(z) # (B D) else: #提高计算速度: y = selective_state_update( ssm_state, x, dt, A, B, C, self.D, z=z, dt_bias=self.dt_proj.bias, dt_softplus=True ) out = self.out_proj(y) return out.unsqueeze(1), conv_state, ssm_state def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs): device = self.out_proj.weight.device conv_dtype = self.conv1d.weight.dtype if dtype is None else dtype conv_state = torch.zeros( batch_size, self.d_model * self.expand, self.d_conv, device=device, dtype=conv_dtype ) ssm_dtype = self.dt_proj.weight.dtype if dtype is None else dtype # ssm_dtype = torch.float32 ssm_state = torch.zeros( batch_size, self.d_model * self.expand, self.d_state, device=device, dtype=ssm_dtype ) return conv_state, ssm_state def _get_states_from_cache(self, inference_params, batch_size, initialize_states=False): assert self.layer_idx is not None if self.layer_idx not in inference_params.key_value_memory_dict: batch_shape = (batch_size,) conv_state = torch.zeros( batch_size, self.d_model * self.expand, self.d_conv, device=self.conv1d.weight.device, dtype=self.conv1d.weight.dtype, ) ssm_state = torch.zeros( batch_size, self.d_model * self.expand, self.d_state, device=self.dt_proj.weight.device, dtype=self.dt_proj.weight.dtype, # dtype=torch.float32, ) inference_params.key_value_memory_dict[self.layer_idx] = (conv_state, ssm_state) else: conv_state, ssm_state = inference_params.key_value_memory_dict[self.layer_idx] # TODO: What if batch size changes between generation, and we reuse the same states? if initialize_states: conv_state.zero_() ssm_state.zero_() return conv_state, ssm_state