tjy/SkinType/transformer.py

156 lines
4.9 KiB
Python
Raw Normal View History

2024-06-20 18:22:33 +08:00
from typing import Optional
import torch
import torch.nn as nn
from torch import Tensor
class MultiHeadAttention(nn.Module):
"""
This layer applies a multi-head self- or cross-attention as described in
`Attention is all you need <https://arxiv.org/abs/1706.03762>`_ paper
Args:
embed_dim (int): :math:`C_{in}` from an expected input of size :math:`(N, P, C_{in})`
num_heads (int): Number of heads in multi-head attention
attn_dropout (float): Attention dropout. Default: 0.0
bias (bool): Use bias or not. Default: ``True``
Shape:
- Input: :math:`(N, P, C_{in})` where :math:`N` is batch size, :math:`P` is number of patches,
and :math:`C_{in}` is input embedding dim
- Output: same shape as the input
"""
def __init__(
self,
embed_dim: int,
num_heads: int,
attn_dropout: float = 0.0,
bias: bool = True,
*args,
**kwargs
) -> None:
super().__init__()
if embed_dim % num_heads != 0:
raise ValueError(
"Embedding dim must be divisible by number of heads in {}. Got: embed_dim={} and num_heads={}".format(
self.__class__.__name__, embed_dim, num_heads
)
)
self.qkv_proj = nn.Linear(in_features=embed_dim, out_features=3 * embed_dim, bias=bias)
self.attn_dropout = nn.Dropout(p=attn_dropout)
self.out_proj = nn.Linear(in_features=embed_dim, out_features=embed_dim, bias=bias)
self.head_dim = embed_dim // num_heads
self.scaling = self.head_dim ** -0.5
self.softmax = nn.Softmax(dim=-1)
self.num_heads = num_heads
self.embed_dim = embed_dim
def forward(self, x_q: Tensor) -> Tensor:
# [N, P, C]
b_sz, n_patches, in_channels = x_q.shape
# self-attention
# [N, P, C] -> [N, P, 3C] -> [N, P, 3, h, c] where C = hc
qkv = self.qkv_proj(x_q).reshape(b_sz, n_patches, 3, self.num_heads, -1)
# [N, P, 3, h, c] -> [N, h, 3, P, C]
qkv = qkv.transpose(1, 3).contiguous()
# [N, h, 3, P, C] -> [N, h, P, C] x 3
query, key, value = qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2]
query = query * self.scaling
# [N h, P, c] -> [N, h, c, P]
key = key.transpose(-1, -2)
# QK^T
# [N, h, P, c] x [N, h, c, P] -> [N, h, P, P]
attn = torch.matmul(query, key)
attn = self.softmax(attn)
attn = self.attn_dropout(attn)
# weighted sum
# [N, h, P, P] x [N, h, P, c] -> [N, h, P, c]
out = torch.matmul(attn, value)
# [N, h, P, c] -> [N, P, h, c] -> [N, P, C]
out = out.transpose(1, 2).reshape(b_sz, n_patches, -1)
out = self.out_proj(out)
return out
class TransformerEncoder(nn.Module):
"""
This class defines the pre-norm `Transformer encoder <https://arxiv.org/abs/1706.03762>`_
Args:
embed_dim (int): :math:`C_{in}` from an expected input of size :math:`(N, P, C_{in})`
ffn_latent_dim (int): Inner dimension of the FFN
num_heads (int) : Number of heads in multi-head attention. Default: 8
attn_dropout (float): Dropout rate for attention in multi-head attention. Default: 0.0
dropout (float): Dropout rate. Default: 0.0
ffn_dropout (float): Dropout between FFN layers. Default: 0.0
Shape:
- Input: :math:`(N, P, C_{in})` where :math:`N` is batch size, :math:`P` is number of patches,
and :math:`C_{in}` is input embedding dim
- Output: same shape as the input
"""
def __init__(
self,
embed_dim: int,
ffn_latent_dim: int,
num_heads: Optional[int] = 8,
attn_dropout: Optional[float] = 0.0,
dropout: Optional[float] = 0.0,
ffn_dropout: Optional[float] = 0.0,
*args,
**kwargs
) -> None:
super().__init__()
attn_unit = MultiHeadAttention(
embed_dim,
num_heads,
attn_dropout=attn_dropout,
bias=True
)
self.pre_norm_mha = nn.Sequential(
nn.LayerNorm(embed_dim),
attn_unit,
nn.Dropout(p=dropout)
)
self.pre_norm_ffn = nn.Sequential(
nn.LayerNorm(embed_dim),
nn.Linear(in_features=embed_dim, out_features=ffn_latent_dim, bias=True),
nn.SiLU(),
nn.Dropout(p=ffn_dropout),
nn.Linear(in_features=ffn_latent_dim, out_features=embed_dim, bias=True),
nn.Dropout(p=dropout)
)
self.embed_dim = embed_dim
self.ffn_dim = ffn_latent_dim
self.ffn_dropout = ffn_dropout
self.std_dropout = dropout
def forward(self, x: Tensor) -> Tensor:
# multi-head attention
res = x
x = self.pre_norm_mha(x)
x = x + res
# feed forward network
x = x + self.pre_norm_ffn(x)
return x