上传文件至 /

main
xly 2024-09-09 18:15:51 +08:00
parent 5311de2b32
commit 77433abcd7
4 changed files with 154 additions and 0 deletions

2
somehing Normal file
View File

@ -0,0 +1,2 @@

39
test1.py Normal file
View File

@ -0,0 +1,39 @@
import torch
from ultralytics import YOLO
from ultralytics.data import download
# 下载COCO128数据集
download('coco128')
# 定义训练参数
epochs = 10 # 训练轮数
batch_size = 16 # 批次大小
img_size = 640 # 输入图像尺寸
# 加载YOLOv8模型
model = YOLO('yolov8s.yaml') # 创建新的模型实例
# 开始训练
model.train(data='coco128.yaml', epochs=epochs, batch=batch_size, imgsz=img_size)
# 加载经过训练的模型,假设模型保存在 'best.pt'
model = YOLO('best.pt')
# 设置要检测的对象类别,这里的例子是只检测行人
class_names = model.names
person_class_id = class_names.index('person')
# 加载图片或视频
img_path = 'path_to_your_image.jpg'
# 进行目标检测
results = model(img_path)
# 处理结果
for result in results:
boxes = result.boxes
for box in boxes:
if box.cls == person_class_id: # 只处理行人检测结果
x1, y1, x2, y2 = box.xyxy[0] # 获取边界框坐标
confidence = box.conf.item() # 获取置信度
print(f"Pedestrian detected at ({x1:.2f}, {y1:.2f}) to ({x2:.2f}, {y2:.2f}), Confidence: {confidence:.2f}")

105
test2.py Normal file
View File

@ -0,0 +1,105 @@
import numpy as np
import cv2
from ultralytics import YOLO
def point_to_line_distance(point, line_start, line_end):
# 线的方向向量
line_dir = np.array(line_end) - np.array(line_start)
# 点到线起点的向量
point_to_start = np.array(point) - np.array(line_start)
# 计算叉积(只适用于二维空间)
cross_product = line_dir[0] * point_to_start[1] - line_dir[1] * point_to_start[0]
# 叉积的符号会表明点在直线的哪一侧
return cross_product
def check_crossing_detection_box(box, start_point, end_point):
x1, y1, x2, y2 = box
points = [(x1, y1), (x2, y1), (x1, y2), (x2, y2)]
distances = [point_to_line_distance(p, start_point, end_point) for p in points]
# 检查是否有正负距离,即检测框的点分别位于斜线两侧
crossing = any(dist < 0 for dist in distances) and any(dist > 0 for dist in distances)
return crossing
def process_frame(frame):
height, width = frame.shape[:2]
desired_height = 500
scale = desired_height / height
resized_frame = cv2.resize(frame, (int(width * scale), desired_height))
frame = resized_frame
height, width = frame.shape[:2]
start_point = (0, height // 2)
end_point = (width, height // 3)
cv2.line(frame, start_point, end_point, (255, 0, 0), 3)
results = model(frame, verbose=False)
for result in results:
boxes = result.boxes
classes = model.names
for box in boxes:
x1, y1, x2, y2 = box.xyxy[0].tolist()
class_id = int(box.cls.item())
if classes[class_id] == 'person':
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
if check_crossing_detection_box((x1, y1, x2, y2), start_point, end_point):
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
return frame
def main():
global model
try:
model = YOLO('yolov8s.pt')
print("模型加载成功。")
except Exception as e:
print(f"加载模型时出现错误: {e}")
model = None
if model is not None:
video_path = "./image/a.mp4"
print("开始视频捕获...")
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("打开视频流或文件时出错")
else:
print("视频流已成功打开。")
# 获取视频的帧率和尺寸
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# 创建VideoWriter对象
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # 使用mp4v编码器
out = cv2.VideoWriter('output.mp4', fourcc, fps, (width, height)) # 输出文件名为output.mp4
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
processed_frame = process_frame(frame)
# 将处理后的帧写入视频文件
out.write(processed_frame)
cv2.imshow('Processed Video', processed_frame)
key = cv2.waitKey(1)
if key & 0xFF == ord('q'):
break
# 释放VideoWriter资源
out.release()
cap.release()
cv2.destroyAllWindows()
print("视频处理完成。")
else:
print("模型未加载,无法继续处理。")
if __name__ == '__main__':
main()

8
test5.py Normal file
View File

@ -0,0 +1,8 @@
from ultralytics import YOLO
# 加载模型
model = YOLO('yolov8n.pt') # 假设你使用的是yolov8n.yaml配置文件
# 开始训练,使用自定义参数
model.train(data='C://Users//86195//Desktop//ultralytics-main (1)//ultralytics-main//data.yaml', epochs=5, batch=20, imgsz=640)