删除 1.py
parent
651876637a
commit
b2aabf05a1
39
1.py
39
1.py
|
@ -1,39 +0,0 @@
|
||||||
import torch
|
|
||||||
from ultralytics import YOLO
|
|
||||||
from ultralytics.data import download
|
|
||||||
|
|
||||||
# 下载COCO128数据集
|
|
||||||
download('coco128')
|
|
||||||
|
|
||||||
# 定义训练参数
|
|
||||||
epochs = 10 # 训练轮数
|
|
||||||
batch_size = 16 # 批次大小
|
|
||||||
img_size = 640 # 输入图像尺寸
|
|
||||||
|
|
||||||
# 加载YOLOv8模型
|
|
||||||
model = YOLO('yolov8s.yaml') # 创建新的模型实例
|
|
||||||
|
|
||||||
# 开始训练
|
|
||||||
model.train(data='coco128.yaml', epochs=epochs, batch=batch_size, imgsz=img_size)
|
|
||||||
|
|
||||||
# 加载经过训练的模型,假设模型保存在 'best.pt'
|
|
||||||
model = YOLO('best.pt')
|
|
||||||
|
|
||||||
# 设置要检测的对象类别,这里的例子是只检测行人
|
|
||||||
class_names = model.names
|
|
||||||
person_class_id = class_names.index('person')
|
|
||||||
|
|
||||||
# 加载图片或视频
|
|
||||||
img_path = 'path_to_your_image.jpg'
|
|
||||||
|
|
||||||
# 进行目标检测
|
|
||||||
results = model(img_path)
|
|
||||||
|
|
||||||
# 处理结果
|
|
||||||
for result in results:
|
|
||||||
boxes = result.boxes
|
|
||||||
for box in boxes:
|
|
||||||
if box.cls == person_class_id: # 只处理行人检测结果
|
|
||||||
x1, y1, x2, y2 = box.xyxy[0] # 获取边界框坐标
|
|
||||||
confidence = box.conf.item() # 获取置信度
|
|
||||||
print(f"Pedestrian detected at ({x1:.2f}, {y1:.2f}) to ({x2:.2f}, {y2:.2f}), Confidence: {confidence:.2f}")
|
|
Loading…
Reference in New Issue