163 lines
17 KiB
Markdown
163 lines
17 KiB
Markdown
|
---
|
|||
|
comments: true
|
|||
|
description: 探索YOLOv8的激动人心功能,这是我们实时目标检测器的最新版本!了解高级架构、预训练模型和精确度与速度的最佳平衡如何使YOLOv8成为您进行目标检测任务的理想选择。
|
|||
|
keywords: YOLOv8,Ultralytics,实时目标检测器,预训练模型,文档,目标检测,YOLO系列,高级架构,精确度,速度
|
|||
|
---
|
|||
|
|
|||
|
# YOLOv8
|
|||
|
|
|||
|
## 概述
|
|||
|
|
|||
|
YOLOv8是YOLO系列实时目标检测器的最新版本,以其在准确度和速度方面的卓越性能而闻名。在构建在之前YOLO版本的基础上,YOLOv8引入了新功能和优化,使其成为各种应用领域中各种目标检测任务的理想选择。
|
|||
|
|
|||
|
![Ultralytics YOLOv8](https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png)
|
|||
|
|
|||
|
## 主要功能
|
|||
|
|
|||
|
- **先进的主干和中间架构:** YOLOv8采用最先进的主干和中间架构,提供了更好的特征提取和目标检测性能。
|
|||
|
- **无锚分割Ultralytics头:** YOLOv8采用无锚分割的Ultralytics头,相比于基于锚点的方法,可以提供更高的准确性和更高效的检测过程。
|
|||
|
- **优化的准确度和速度平衡:** YOLOv8专注于在准确度和速度之间维持最佳平衡,适用于各种实时目标检测任务。
|
|||
|
- **多种预训练模型:** YOLOv8提供了一系列预训练模型,以满足各种任务和性能要求,更容易找到适合特定用例的模型。
|
|||
|
|
|||
|
## 支持的任务和模式
|
|||
|
|
|||
|
YOLOv8系列提供了多种模型,每个模型专门用于计算机视觉中的特定任务。这些模型旨在满足各种要求,从目标检测到更复杂的任务,如实例分割、姿态/关键点检测和分类。
|
|||
|
|
|||
|
YOLOv8系列的每个变体都针对其相应的任务进行了优化,确保高性能和准确性。此外,这些模型与各种操作模式兼容,包括[推理](../modes/predict.md)、[验证](../modes/val.md)、[训练](../modes/train.md)和[导出](../modes/export.md),便于在部署和开发的不同阶段使用。
|
|||
|
|
|||
|
| 模型 | 文件名 | 任务 | 推理 | 验证 | 训练 | 导出 |
|
|||
|
|-------------|----------------------------------------------------------------------------------------------------------------|-----------------------------|----|----|----|----|
|
|||
|
| YOLOv8 | `yolov8n.pt` `yolov8s.pt` `yolov8m.pt` `yolov8l.pt` `yolov8x.pt` | [检测](../tasks/detect.md) | ✅ | ✅ | ✅ | ✅ |
|
|||
|
| YOLOv8-seg | `yolov8n-seg.pt` `yolov8s-seg.pt` `yolov8m-seg.pt` `yolov8l-seg.pt` `yolov8x-seg.pt` | [实例分割](../tasks/segment.md) | ✅ | ✅ | ✅ | ✅ |
|
|||
|
| YOLOv8-pose | `yolov8n-pose.pt` `yolov8s-pose.pt` `yolov8m-pose.pt` `yolov8l-pose.pt` `yolov8x-pose.pt` `yolov8x-pose-p6.pt` | [姿态/关键点](../tasks/pose.md) | ✅ | ✅ | ✅ | ✅ |
|
|||
|
| YOLOv8-cls | `yolov8n-cls.pt` `yolov8s-cls.pt` `yolov8m-cls.pt` `yolov8l-cls.pt` `yolov8x-cls.pt` | [分类](../tasks/classify.md) | ✅ | ✅ | ✅ | ✅ |
|
|||
|
|
|||
|
这个表格提供了YOLOv8模型变种的概览,突出了它们在特定任务中的适用性,以及它们与各种操作模式(如推理、验证、训练和导出)的兼容性。它展示了YOLOv8系列的多功能性和鲁棒性,使它们适用于计算机视觉中各种应用。
|
|||
|
|
|||
|
## 性能指标
|
|||
|
|
|||
|
!!! Performance
|
|||
|
|
|||
|
=== "检测(COCO)"
|
|||
|
|
|||
|
有关在[COCO](https://docs.ultralytics.com/datasets/detect/coco/)上训练的这些模型的用法示例,请参见[Detection Docs](https://docs.ultralytics.com/tasks/detect/),其中包括80个预训练的类别。
|
|||
|
|
|||
|
| 模型 | 大小<br><sup>(pixels) | mAP<sup>val<br>50-95 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) |
|
|||
|
| ---------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------------------- | ---------------------------------- | ------------------ | ----------------- |
|
|||
|
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
|
|||
|
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
|
|||
|
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
|
|||
|
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
|
|||
|
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
|
|||
|
|
|||
|
=== "检测(Open Images V7)"
|
|||
|
|
|||
|
有关在[Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/)上训练的这些模型的用法示例,请参见[Detection Docs](https://docs.ultralytics.com/tasks/detect/),其中包括600个预训练的类别。
|
|||
|
|
|||
|
| 模型 | 大小<br><sup>(pixels) | mAP<sup>val<br>50-95 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) |
|
|||
|
| ------------------------------------------------------------------------------------------- | --------------------- | -------------------- | ------------------------------ | ---------------------------------- | ------------------ | ----------------- |
|
|||
|
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
|
|||
|
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
|
|||
|
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
|
|||
|
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
|
|||
|
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
|
|||
|
|
|||
|
=== "分割(COCO)"
|
|||
|
|
|||
|
有关在[COCO](https://docs.ultralytics.com/datasets/segment/coco/)上训练的这些模型的用法示例,请参见[Segmentation Docs](https://docs.ultralytics.com/tasks/segment/),其中包括80个预训练的类别。
|
|||
|
|
|||
|
| 模型 | 大小<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) |
|
|||
|
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ---------------------------------- | ------------------ | ----------------- |
|
|||
|
| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
|
|||
|
| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
|
|||
|
| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
|
|||
|
| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
|
|||
|
| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
|
|||
|
|
|||
|
=== "分类(ImageNet)"
|
|||
|
|
|||
|
有关在[ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/)上训练的这些模型的用法示例,请参见[Classification Docs](https://docs.ultralytics.com/tasks/classify/),其中包括1000个预训练的类别。
|
|||
|
|
|||
|
| 模型 | 大小<br><sup>(pixels) | 准确率<br><sup>top1 | 准确率<br><sup>top5 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
|
|||
|
| ---------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------ | ------------------------------ | ---------------------------------- | ------------------ | ------------------------ |
|
|||
|
| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 |
|
|||
|
| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | 23.4 | 0.35 | 6.4 | 13.5 |
|
|||
|
| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | 85.4 | 0.62 | 17.0 | 42.7 |
|
|||
|
| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1 | 163.0 | 0.87 | 37.5 | 99.7 |
|
|||
|
| [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | 232.0 | 1.01 | 57.4 | 154.8 |
|
|||
|
|
|||
|
=== "姿态(COCO)"
|
|||
|
|
|||
|
有关在[COCO](https://docs.ultralytics.com/datasets/pose/coco/)上训练的这些模型的用法示例,请参见[Pose Estimation Docs](https://docs.ultralytics.com/tasks/segment/),其中包括1个预训练的类别,'person'。
|
|||
|
|
|||
|
| 模型 | 大小<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) |
|
|||
|
| ---------------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ---------------------------------- | ------------------ | ----------------- |
|
|||
|
| [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
|
|||
|
| [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
|
|||
|
| [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
|
|||
|
| [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
|
|||
|
| [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
|
|||
|
| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
|
|||
|
|
|||
|
## 用法示例
|
|||
|
|
|||
|
这个示例提供了关于YOLOv8训练和推理的简单示例。有关这些和其他[模式](../modes/index.md)的完整文档,请参见[Predict](../modes/predict.md),[Train](../modes/train.md),[Val](../modes/val.md)和[Export](../modes/export.md)文档页面。
|
|||
|
|
|||
|
请注意,以下示例是针对用于目标检测的YOLOv8 [Detect](../tasks/detect.md)模型。有关其他支持的任务,请参见[Segment](../tasks/segment.md)、[Classify](../tasks/classify.md)和[Pose](../tasks/pose.md)文档。
|
|||
|
|
|||
|
!!! Example "示例"
|
|||
|
|
|||
|
=== "Python"
|
|||
|
|
|||
|
可以将PyTorch预训练的`*.pt`模型和配置`*.yaml`文件传递给`YOLO()`类,在python中创建一个模型实例:
|
|||
|
|
|||
|
```python
|
|||
|
from ultralytics import YOLO
|
|||
|
|
|||
|
# 加载一个在COCO预训练的YOLOv8n模型
|
|||
|
model = YOLO('yolov8n.pt')
|
|||
|
|
|||
|
# 显示模型信息(可选)
|
|||
|
model.info()
|
|||
|
|
|||
|
# 使用COCO8示例数据集训练模型100个epoch
|
|||
|
results = model.train(data='coco8.yaml', epochs=100, imgsz=640)
|
|||
|
|
|||
|
# 使用YOLOv8n模型在'bus.jpg'图片上运行推理
|
|||
|
results = model('path/to/bus.jpg')
|
|||
|
```
|
|||
|
|
|||
|
=== "CLI"
|
|||
|
|
|||
|
可以使用CLI命令直接运行模型:
|
|||
|
|
|||
|
```bash
|
|||
|
# 加载一个在COCO预训练的YOLOv8n模型,并在COCO8示例数据集上训练100个epoch
|
|||
|
yolo train model=yolov8n.pt data=coco8.yaml epochs=100 imgsz=640
|
|||
|
|
|||
|
# 加载一个在COCO预训练的YOLOv8n模型,并在'bus.jpg'图片上运行推理
|
|||
|
yolo predict model=yolov8n.pt source=path/to/bus.jpg
|
|||
|
```
|
|||
|
|
|||
|
## 引用和致谢
|
|||
|
|
|||
|
如果您在工作中使用YOLOv8模型或此存储库中的其他软件,请使用以下格式进行引用:
|
|||
|
|
|||
|
!!! Quote "引用"
|
|||
|
|
|||
|
=== "BibTeX"
|
|||
|
|
|||
|
```bibtex
|
|||
|
@software{yolov8_ultralytics,
|
|||
|
author = {Glenn Jocher and Ayush Chaurasia and Jing Qiu},
|
|||
|
title = {Ultralytics YOLOv8},
|
|||
|
version = {8.0.0},
|
|||
|
year = {2023},
|
|||
|
url = {https://github.com/ultralytics/ultralytics},
|
|||
|
orcid = {0000-0001-5950-6979, 0000-0002-7603-6750, 0000-0003-3783-7069},
|
|||
|
license = {AGPL-3.0}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
请注意,DOI正在等待中,DOI将在可用时添加到引用中。YOLOv8模型根据[AGPL-3.0](https://github.com/ultralytics/ultralytics/blob/main/LICENSE)和[企业许可证](https://ultralytics.com/license)提供。
|