Sleeping-post-detection-fir.../ultralytics/data/converter.py

305 lines
12 KiB
Python
Raw Permalink Normal View History

2024-09-08 14:08:46 +08:00
# Ultralytics YOLO 🚀, AGPL-3.0 license
import json
from collections import defaultdict
from pathlib import Path
import cv2
import numpy as np
from ultralytics.utils import LOGGER, TQDM
from ultralytics.utils.files import increment_path
def coco91_to_coco80_class():
"""
Converts 91-index COCO class IDs to 80-index COCO class IDs.
Returns:
(list): A list of 91 class IDs where the index represents the 80-index class ID and the value is the
corresponding 91-index class ID.
"""
return [
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, None, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, None, 24, 25, None,
None, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, None, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, None, 60, None, None, 61, None, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,
None, 73, 74, 75, 76, 77, 78, 79, None]
def coco80_to_coco91_class():
"""
Converts 80-index (val2014) to 91-index (paper).
For details see https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/.
Example:
```python
import numpy as np
a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
```
"""
return [
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
def convert_coco(labels_dir='../coco/annotations/',
save_dir='coco_converted/',
use_segments=False,
use_keypoints=False,
cls91to80=True):
"""
Converts COCO dataset annotations to a YOLO annotation format suitable for training YOLO models.
Args:
labels_dir (str, optional): Path to directory containing COCO dataset annotation files.
save_dir (str, optional): Path to directory to save results to.
use_segments (bool, optional): Whether to include segmentation masks in the output.
use_keypoints (bool, optional): Whether to include keypoint annotations in the output.
cls91to80 (bool, optional): Whether to map 91 COCO class IDs to the corresponding 80 COCO class IDs.
Example:
```python
from ultralytics.data.converter import convert_coco
convert_coco('../datasets/coco/annotations/', use_segments=True, use_keypoints=False, cls91to80=True)
```
Output:
Generates output files in the specified output directory.
"""
# Create dataset directory
save_dir = increment_path(save_dir) # increment if save directory already exists
for p in save_dir / 'labels', save_dir / 'images':
p.mkdir(parents=True, exist_ok=True) # make dir
# Convert classes
coco80 = coco91_to_coco80_class()
# Import json
for json_file in sorted(Path(labels_dir).resolve().glob('*.json')):
fn = Path(save_dir) / 'labels' / json_file.stem.replace('instances_', '') # folder name
fn.mkdir(parents=True, exist_ok=True)
with open(json_file) as f:
data = json.load(f)
# Create image dict
images = {f'{x["id"]:d}': x for x in data['images']}
# Create image-annotations dict
imgToAnns = defaultdict(list)
for ann in data['annotations']:
imgToAnns[ann['image_id']].append(ann)
# Write labels file
for img_id, anns in TQDM(imgToAnns.items(), desc=f'Annotations {json_file}'):
img = images[f'{img_id:d}']
h, w, f = img['height'], img['width'], img['file_name']
bboxes = []
segments = []
keypoints = []
for ann in anns:
if ann['iscrowd']:
continue
# The COCO box format is [top left x, top left y, width, height]
box = np.array(ann['bbox'], dtype=np.float64)
box[:2] += box[2:] / 2 # xy top-left corner to center
box[[0, 2]] /= w # normalize x
box[[1, 3]] /= h # normalize y
if box[2] <= 0 or box[3] <= 0: # if w <= 0 and h <= 0
continue
cls = coco80[ann['category_id'] - 1] if cls91to80 else ann['category_id'] - 1 # class
box = [cls] + box.tolist()
if box not in bboxes:
bboxes.append(box)
if use_segments and ann.get('segmentation') is not None:
if len(ann['segmentation']) == 0:
segments.append([])
continue
elif len(ann['segmentation']) > 1:
s = merge_multi_segment(ann['segmentation'])
s = (np.concatenate(s, axis=0) / np.array([w, h])).reshape(-1).tolist()
else:
s = [j for i in ann['segmentation'] for j in i] # all segments concatenated
s = (np.array(s).reshape(-1, 2) / np.array([w, h])).reshape(-1).tolist()
s = [cls] + s
segments.append(s)
if use_keypoints and ann.get('keypoints') is not None:
keypoints.append(box + (np.array(ann['keypoints']).reshape(-1, 3) /
np.array([w, h, 1])).reshape(-1).tolist())
# Write
with open((fn / f).with_suffix('.txt'), 'a') as file:
for i in range(len(bboxes)):
if use_keypoints:
line = *(keypoints[i]), # cls, box, keypoints
else:
line = *(segments[i]
if use_segments and len(segments[i]) > 0 else bboxes[i]), # cls, box or segments
file.write(('%g ' * len(line)).rstrip() % line + '\n')
LOGGER.info(f'COCO data converted successfully.\nResults saved to {save_dir.resolve()}')
def convert_dota_to_yolo_obb(dota_root_path: str):
"""
Converts DOTA dataset annotations to YOLO OBB (Oriented Bounding Box) format.
The function processes images in the 'train' and 'val' folders of the DOTA dataset. For each image, it reads the
associated label from the original labels directory and writes new labels in YOLO OBB format to a new directory.
Args:
dota_root_path (str): The root directory path of the DOTA dataset.
Example:
```python
from ultralytics.data.converter import convert_dota_to_yolo_obb
convert_dota_to_yolo_obb('path/to/DOTA')
```
Notes:
The directory structure assumed for the DOTA dataset:
- DOTA
images
train
val
labels
train_original
val_original
After execution, the function will organize the labels into:
- DOTA
labels
train
val
"""
dota_root_path = Path(dota_root_path)
# Class names to indices mapping
class_mapping = {
'plane': 0,
'ship': 1,
'storage-tank': 2,
'baseball-diamond': 3,
'tennis-court': 4,
'basketball-court': 5,
'ground-track-field': 6,
'harbor': 7,
'bridge': 8,
'large-vehicle': 9,
'small-vehicle': 10,
'helicopter': 11,
'roundabout': 12,
'soccer-ball-field': 13,
'swimming-pool': 14,
'container-crane': 15,
'airport': 16,
'helipad': 17}
def convert_label(image_name, image_width, image_height, orig_label_dir, save_dir):
"""Converts a single image's DOTA annotation to YOLO OBB format and saves it to a specified directory."""
orig_label_path = orig_label_dir / f'{image_name}.txt'
save_path = save_dir / f'{image_name}.txt'
with orig_label_path.open('r') as f, save_path.open('w') as g:
lines = f.readlines()
for line in lines:
parts = line.strip().split()
if len(parts) < 9:
continue
class_name = parts[8]
class_idx = class_mapping[class_name]
coords = [float(p) for p in parts[:8]]
normalized_coords = [
coords[i] / image_width if i % 2 == 0 else coords[i] / image_height for i in range(8)]
formatted_coords = ['{:.6g}'.format(coord) for coord in normalized_coords]
g.write(f"{class_idx} {' '.join(formatted_coords)}\n")
for phase in ['train', 'val']:
image_dir = dota_root_path / 'images' / phase
orig_label_dir = dota_root_path / 'labels' / f'{phase}_original'
save_dir = dota_root_path / 'labels' / phase
save_dir.mkdir(parents=True, exist_ok=True)
image_paths = list(image_dir.iterdir())
for image_path in TQDM(image_paths, desc=f'Processing {phase} images'):
if image_path.suffix != '.png':
continue
image_name_without_ext = image_path.stem
img = cv2.imread(str(image_path))
h, w = img.shape[:2]
convert_label(image_name_without_ext, w, h, orig_label_dir, save_dir)
def min_index(arr1, arr2):
"""
Find a pair of indexes with the shortest distance between two arrays of 2D points.
Args:
arr1 (np.array): A NumPy array of shape (N, 2) representing N 2D points.
arr2 (np.array): A NumPy array of shape (M, 2) representing M 2D points.
Returns:
(tuple): A tuple containing the indexes of the points with the shortest distance in arr1 and arr2 respectively.
"""
dis = ((arr1[:, None, :] - arr2[None, :, :]) ** 2).sum(-1)
return np.unravel_index(np.argmin(dis, axis=None), dis.shape)
def merge_multi_segment(segments):
"""
Merge multiple segments into one list by connecting the coordinates with the minimum distance between each segment.
This function connects these coordinates with a thin line to merge all segments into one.
Args:
segments (List[List]): Original segmentations in COCO's JSON file.
Each element is a list of coordinates, like [segmentation1, segmentation2,...].
Returns:
s (List[np.ndarray]): A list of connected segments represented as NumPy arrays.
"""
s = []
segments = [np.array(i).reshape(-1, 2) for i in segments]
idx_list = [[] for _ in range(len(segments))]
# Record the indexes with min distance between each segment
for i in range(1, len(segments)):
idx1, idx2 = min_index(segments[i - 1], segments[i])
idx_list[i - 1].append(idx1)
idx_list[i].append(idx2)
# Use two round to connect all the segments
for k in range(2):
# Forward connection
if k == 0:
for i, idx in enumerate(idx_list):
# Middle segments have two indexes, reverse the index of middle segments
if len(idx) == 2 and idx[0] > idx[1]:
idx = idx[::-1]
segments[i] = segments[i][::-1, :]
segments[i] = np.roll(segments[i], -idx[0], axis=0)
segments[i] = np.concatenate([segments[i], segments[i][:1]])
# Deal with the first segment and the last one
if i in [0, len(idx_list) - 1]:
s.append(segments[i])
else:
idx = [0, idx[1] - idx[0]]
s.append(segments[i][idx[0]:idx[1] + 1])
else:
for i in range(len(idx_list) - 1, -1, -1):
if i not in [0, len(idx_list) - 1]:
idx = idx_list[i]
nidx = abs(idx[1] - idx[0])
s.append(segments[i][nidx:])
return s