225 lines
11 KiB
Python
225 lines
11 KiB
Python
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||
|
"""
|
||
|
This module provides functionalities for hyperparameter tuning of the Ultralytics YOLO models for object detection,
|
||
|
instance segmentation, image classification, pose estimation, and multi-object tracking.
|
||
|
|
||
|
Hyperparameter tuning is the process of systematically searching for the optimal set of hyperparameters
|
||
|
that yield the best model performance. This is particularly crucial in deep learning models like YOLO,
|
||
|
where small changes in hyperparameters can lead to significant differences in model accuracy and efficiency.
|
||
|
|
||
|
Example:
|
||
|
Tune hyperparameters for YOLOv8n on COCO8 at imgsz=640 and epochs=30 for 300 tuning iterations.
|
||
|
```python
|
||
|
from ultralytics import YOLO
|
||
|
|
||
|
model = YOLO('yolov8n.pt')
|
||
|
model.tune(data='coco8.yaml', epochs=10, iterations=300, optimizer='AdamW', plots=False, save=False, val=False)
|
||
|
```
|
||
|
"""
|
||
|
import random
|
||
|
import shutil
|
||
|
import subprocess
|
||
|
import time
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
|
||
|
from ultralytics.cfg import get_cfg, get_save_dir
|
||
|
from ultralytics.utils import DEFAULT_CFG, LOGGER, callbacks, colorstr, remove_colorstr, yaml_print, yaml_save
|
||
|
from ultralytics.utils.plotting import plot_tune_results
|
||
|
|
||
|
|
||
|
class Tuner:
|
||
|
"""
|
||
|
Class responsible for hyperparameter tuning of YOLO models.
|
||
|
|
||
|
The class evolves YOLO model hyperparameters over a given number of iterations
|
||
|
by mutating them according to the search space and retraining the model to evaluate their performance.
|
||
|
|
||
|
Attributes:
|
||
|
space (dict): Hyperparameter search space containing bounds and scaling factors for mutation.
|
||
|
tune_dir (Path): Directory where evolution logs and results will be saved.
|
||
|
tune_csv (Path): Path to the CSV file where evolution logs are saved.
|
||
|
|
||
|
Methods:
|
||
|
_mutate(hyp: dict) -> dict:
|
||
|
Mutates the given hyperparameters within the bounds specified in `self.space`.
|
||
|
|
||
|
__call__():
|
||
|
Executes the hyperparameter evolution across multiple iterations.
|
||
|
|
||
|
Example:
|
||
|
Tune hyperparameters for YOLOv8n on COCO8 at imgsz=640 and epochs=30 for 300 tuning iterations.
|
||
|
```python
|
||
|
from ultralytics import YOLO
|
||
|
|
||
|
model = YOLO('yolov8n.pt')
|
||
|
model.tune(data='coco8.yaml', epochs=10, iterations=300, optimizer='AdamW', plots=False, save=False, val=False)
|
||
|
```
|
||
|
"""
|
||
|
|
||
|
def __init__(self, args=DEFAULT_CFG, _callbacks=None):
|
||
|
"""
|
||
|
Initialize the Tuner with configurations.
|
||
|
|
||
|
Args:
|
||
|
args (dict, optional): Configuration for hyperparameter evolution.
|
||
|
"""
|
||
|
self.args = get_cfg(overrides=args)
|
||
|
self.space = { # key: (min, max, gain(optional))
|
||
|
# 'optimizer': tune.choice(['SGD', 'Adam', 'AdamW', 'NAdam', 'RAdam', 'RMSProp']),
|
||
|
'lr0': (1e-5, 1e-1),
|
||
|
'lrf': (0.0001, 0.1), # final OneCycleLR learning rate (lr0 * lrf)
|
||
|
'momentum': (0.7, 0.98, 0.3), # SGD momentum/Adam beta1
|
||
|
'weight_decay': (0.0, 0.001), # optimizer weight decay 5e-4
|
||
|
'warmup_epochs': (0.0, 5.0), # warmup epochs (fractions ok)
|
||
|
'warmup_momentum': (0.0, 0.95), # warmup initial momentum
|
||
|
'box': (1.0, 20.0), # box loss gain
|
||
|
'cls': (0.2, 4.0), # cls loss gain (scale with pixels)
|
||
|
'dfl': (0.4, 6.0), # dfl loss gain
|
||
|
'hsv_h': (0.0, 0.1), # image HSV-Hue augmentation (fraction)
|
||
|
'hsv_s': (0.0, 0.9), # image HSV-Saturation augmentation (fraction)
|
||
|
'hsv_v': (0.0, 0.9), # image HSV-Value augmentation (fraction)
|
||
|
'degrees': (0.0, 45.0), # image rotation (+/- deg)
|
||
|
'translate': (0.0, 0.9), # image translation (+/- fraction)
|
||
|
'scale': (0.0, 0.95), # image scale (+/- gain)
|
||
|
'shear': (0.0, 10.0), # image shear (+/- deg)
|
||
|
'perspective': (0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
|
||
|
'flipud': (0.0, 1.0), # image flip up-down (probability)
|
||
|
'fliplr': (0.0, 1.0), # image flip left-right (probability)
|
||
|
'mosaic': (0.0, 1.0), # image mixup (probability)
|
||
|
'mixup': (0.0, 1.0), # image mixup (probability)
|
||
|
'copy_paste': (0.0, 1.0)} # segment copy-paste (probability)
|
||
|
self.tune_dir = get_save_dir(self.args, name='tune')
|
||
|
self.tune_csv = self.tune_dir / 'tune_results.csv'
|
||
|
self.callbacks = _callbacks or callbacks.get_default_callbacks()
|
||
|
self.prefix = colorstr('Tuner: ')
|
||
|
callbacks.add_integration_callbacks(self)
|
||
|
LOGGER.info(f"{self.prefix}Initialized Tuner instance with 'tune_dir={self.tune_dir}'\n"
|
||
|
f'{self.prefix}💡 Learn about tuning at https://docs.ultralytics.com/guides/hyperparameter-tuning')
|
||
|
|
||
|
def _mutate(self, parent='single', n=5, mutation=0.8, sigma=0.2):
|
||
|
"""
|
||
|
Mutates the hyperparameters based on bounds and scaling factors specified in `self.space`.
|
||
|
|
||
|
Args:
|
||
|
parent (str): Parent selection method: 'single' or 'weighted'.
|
||
|
n (int): Number of parents to consider.
|
||
|
mutation (float): Probability of a parameter mutation in any given iteration.
|
||
|
sigma (float): Standard deviation for Gaussian random number generator.
|
||
|
|
||
|
Returns:
|
||
|
(dict): A dictionary containing mutated hyperparameters.
|
||
|
"""
|
||
|
if self.tune_csv.exists(): # if CSV file exists: select best hyps and mutate
|
||
|
# Select parent(s)
|
||
|
x = np.loadtxt(self.tune_csv, ndmin=2, delimiter=',', skiprows=1)
|
||
|
fitness = x[:, 0] # first column
|
||
|
n = min(n, len(x)) # number of previous results to consider
|
||
|
x = x[np.argsort(-fitness)][:n] # top n mutations
|
||
|
w = x[:, 0] - x[:, 0].min() + 1E-6 # weights (sum > 0)
|
||
|
if parent == 'single' or len(x) == 1:
|
||
|
# x = x[random.randint(0, n - 1)] # random selection
|
||
|
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
|
||
|
elif parent == 'weighted':
|
||
|
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
|
||
|
|
||
|
# Mutate
|
||
|
r = np.random # method
|
||
|
r.seed(int(time.time()))
|
||
|
g = np.array([v[2] if len(v) == 3 else 1.0 for k, v in self.space.items()]) # gains 0-1
|
||
|
ng = len(self.space)
|
||
|
v = np.ones(ng)
|
||
|
while all(v == 1): # mutate until a change occurs (prevent duplicates)
|
||
|
v = (g * (r.random(ng) < mutation) * r.randn(ng) * r.random() * sigma + 1).clip(0.3, 3.0)
|
||
|
hyp = {k: float(x[i + 1] * v[i]) for i, k in enumerate(self.space.keys())}
|
||
|
else:
|
||
|
hyp = {k: getattr(self.args, k) for k in self.space.keys()}
|
||
|
|
||
|
# Constrain to limits
|
||
|
for k, v in self.space.items():
|
||
|
hyp[k] = max(hyp[k], v[0]) # lower limit
|
||
|
hyp[k] = min(hyp[k], v[1]) # upper limit
|
||
|
hyp[k] = round(hyp[k], 5) # significant digits
|
||
|
|
||
|
return hyp
|
||
|
|
||
|
def __call__(self, model=None, iterations=10, cleanup=True):
|
||
|
"""
|
||
|
Executes the hyperparameter evolution process when the Tuner instance is called.
|
||
|
|
||
|
This method iterates through the number of iterations, performing the following steps in each iteration:
|
||
|
1. Load the existing hyperparameters or initialize new ones.
|
||
|
2. Mutate the hyperparameters using the `mutate` method.
|
||
|
3. Train a YOLO model with the mutated hyperparameters.
|
||
|
4. Log the fitness score and mutated hyperparameters to a CSV file.
|
||
|
|
||
|
Args:
|
||
|
model (Model): A pre-initialized YOLO model to be used for training.
|
||
|
iterations (int): The number of generations to run the evolution for.
|
||
|
cleanup (bool): Whether to delete iteration weights to reduce storage space used during tuning.
|
||
|
|
||
|
Note:
|
||
|
The method utilizes the `self.tune_csv` Path object to read and log hyperparameters and fitness scores.
|
||
|
Ensure this path is set correctly in the Tuner instance.
|
||
|
"""
|
||
|
|
||
|
t0 = time.time()
|
||
|
best_save_dir, best_metrics = None, None
|
||
|
(self.tune_dir / 'weights').mkdir(parents=True, exist_ok=True)
|
||
|
for i in range(iterations):
|
||
|
# Mutate hyperparameters
|
||
|
mutated_hyp = self._mutate()
|
||
|
LOGGER.info(f'{self.prefix}Starting iteration {i + 1}/{iterations} with hyperparameters: {mutated_hyp}')
|
||
|
|
||
|
metrics = {}
|
||
|
train_args = {**vars(self.args), **mutated_hyp}
|
||
|
save_dir = get_save_dir(get_cfg(train_args))
|
||
|
weights_dir = save_dir / 'weights'
|
||
|
ckpt_file = weights_dir / ('best.pt' if (weights_dir / 'best.pt').exists() else 'last.pt')
|
||
|
try:
|
||
|
# Train YOLO model with mutated hyperparameters (run in subprocess to avoid dataloader hang)
|
||
|
cmd = ['yolo', 'train', *(f'{k}={v}' for k, v in train_args.items())]
|
||
|
assert subprocess.run(cmd, check=True).returncode == 0, 'training failed'
|
||
|
metrics = torch.load(ckpt_file)['train_metrics']
|
||
|
|
||
|
except Exception as e:
|
||
|
LOGGER.warning(f'WARNING ❌️ training failure for hyperparameter tuning iteration {i + 1}\n{e}')
|
||
|
|
||
|
# Save results and mutated_hyp to CSV
|
||
|
fitness = metrics.get('fitness', 0.0)
|
||
|
log_row = [round(fitness, 5)] + [mutated_hyp[k] for k in self.space.keys()]
|
||
|
headers = '' if self.tune_csv.exists() else (','.join(['fitness'] + list(self.space.keys())) + '\n')
|
||
|
with open(self.tune_csv, 'a') as f:
|
||
|
f.write(headers + ','.join(map(str, log_row)) + '\n')
|
||
|
|
||
|
# Get best results
|
||
|
x = np.loadtxt(self.tune_csv, ndmin=2, delimiter=',', skiprows=1)
|
||
|
fitness = x[:, 0] # first column
|
||
|
best_idx = fitness.argmax()
|
||
|
best_is_current = best_idx == i
|
||
|
if best_is_current:
|
||
|
best_save_dir = save_dir
|
||
|
best_metrics = {k: round(v, 5) for k, v in metrics.items()}
|
||
|
for ckpt in weights_dir.glob('*.pt'):
|
||
|
shutil.copy2(ckpt, self.tune_dir / 'weights')
|
||
|
elif cleanup:
|
||
|
shutil.rmtree(ckpt_file.parent) # remove iteration weights/ dir to reduce storage space
|
||
|
|
||
|
# Plot tune results
|
||
|
plot_tune_results(self.tune_csv)
|
||
|
|
||
|
# Save and print tune results
|
||
|
header = (f'{self.prefix}{i + 1}/{iterations} iterations complete ✅ ({time.time() - t0:.2f}s)\n'
|
||
|
f'{self.prefix}Results saved to {colorstr("bold", self.tune_dir)}\n'
|
||
|
f'{self.prefix}Best fitness={fitness[best_idx]} observed at iteration {best_idx + 1}\n'
|
||
|
f'{self.prefix}Best fitness metrics are {best_metrics}\n'
|
||
|
f'{self.prefix}Best fitness model is {best_save_dir}\n'
|
||
|
f'{self.prefix}Best fitness hyperparameters are printed below.\n')
|
||
|
LOGGER.info('\n' + header)
|
||
|
data = {k: float(x[best_idx, i + 1]) for i, k in enumerate(self.space.keys())}
|
||
|
yaml_save(self.tune_dir / 'best_hyperparameters.yaml',
|
||
|
data=data,
|
||
|
header=remove_colorstr(header.replace(self.prefix, '# ')) + '\n')
|
||
|
yaml_print(self.tune_dir / 'best_hyperparameters.yaml')
|