89 lines
3.8 KiB
Python
89 lines
3.8 KiB
Python
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||
|
"""Functions for estimating the best YOLO batch size to use a fraction of the available CUDA memory in PyTorch."""
|
||
|
|
||
|
from copy import deepcopy
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
|
||
|
from ultralytics.utils import DEFAULT_CFG, LOGGER, colorstr
|
||
|
from ultralytics.utils.torch_utils import profile
|
||
|
|
||
|
|
||
|
def check_train_batch_size(model, imgsz=640, amp=True):
|
||
|
"""
|
||
|
Check YOLO training batch size using the autobatch() function.
|
||
|
|
||
|
Args:
|
||
|
model (torch.nn.Module): YOLO model to check batch size for.
|
||
|
imgsz (int): Image size used for training.
|
||
|
amp (bool): If True, use automatic mixed precision (AMP) for training.
|
||
|
|
||
|
Returns:
|
||
|
(int): Optimal batch size computed using the autobatch() function.
|
||
|
"""
|
||
|
|
||
|
with torch.cuda.amp.autocast(amp):
|
||
|
return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size
|
||
|
|
||
|
|
||
|
def autobatch(model, imgsz=640, fraction=0.60, batch_size=DEFAULT_CFG.batch):
|
||
|
"""
|
||
|
Automatically estimate the best YOLO batch size to use a fraction of the available CUDA memory.
|
||
|
|
||
|
Args:
|
||
|
model (torch.nn.module): YOLO model to compute batch size for.
|
||
|
imgsz (int, optional): The image size used as input for the YOLO model. Defaults to 640.
|
||
|
fraction (float, optional): The fraction of available CUDA memory to use. Defaults to 0.60.
|
||
|
batch_size (int, optional): The default batch size to use if an error is detected. Defaults to 16.
|
||
|
|
||
|
Returns:
|
||
|
(int): The optimal batch size.
|
||
|
"""
|
||
|
|
||
|
# Check device
|
||
|
prefix = colorstr('AutoBatch: ')
|
||
|
LOGGER.info(f'{prefix}Computing optimal batch size for imgsz={imgsz}')
|
||
|
device = next(model.parameters()).device # get model device
|
||
|
if device.type == 'cpu':
|
||
|
LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
|
||
|
return batch_size
|
||
|
if torch.backends.cudnn.benchmark:
|
||
|
LOGGER.info(f'{prefix} ⚠️ Requires torch.backends.cudnn.benchmark=False, using default batch-size {batch_size}')
|
||
|
return batch_size
|
||
|
|
||
|
# Inspect CUDA memory
|
||
|
gb = 1 << 30 # bytes to GiB (1024 ** 3)
|
||
|
d = str(device).upper() # 'CUDA:0'
|
||
|
properties = torch.cuda.get_device_properties(device) # device properties
|
||
|
t = properties.total_memory / gb # GiB total
|
||
|
r = torch.cuda.memory_reserved(device) / gb # GiB reserved
|
||
|
a = torch.cuda.memory_allocated(device) / gb # GiB allocated
|
||
|
f = t - (r + a) # GiB free
|
||
|
LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
|
||
|
|
||
|
# Profile batch sizes
|
||
|
batch_sizes = [1, 2, 4, 8, 16]
|
||
|
try:
|
||
|
img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes]
|
||
|
results = profile(img, model, n=3, device=device)
|
||
|
|
||
|
# Fit a solution
|
||
|
y = [x[2] for x in results if x] # memory [2]
|
||
|
p = np.polyfit(batch_sizes[:len(y)], y, deg=1) # first degree polynomial fit
|
||
|
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
|
||
|
if None in results: # some sizes failed
|
||
|
i = results.index(None) # first fail index
|
||
|
if b >= batch_sizes[i]: # y intercept above failure point
|
||
|
b = batch_sizes[max(i - 1, 0)] # select prior safe point
|
||
|
if b < 1 or b > 1024: # b outside of safe range
|
||
|
b = batch_size
|
||
|
LOGGER.info(f'{prefix}WARNING ⚠️ CUDA anomaly detected, using default batch-size {batch_size}.')
|
||
|
|
||
|
fraction = (np.polyval(p, b) + r + a) / t # actual fraction predicted
|
||
|
LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅')
|
||
|
return b
|
||
|
except Exception as e:
|
||
|
LOGGER.warning(f'{prefix}WARNING ⚠️ error detected: {e}, using default batch-size {batch_size}.')
|
||
|
return batch_size
|