186 lines
5.5 KiB
C++
186 lines
5.5 KiB
C++
|
#include "inference.h"
|
||
|
|
||
|
Inference::Inference(const std::string &onnxModelPath, const cv::Size &modelInputShape, const std::string &classesTxtFile, const bool &runWithCuda)
|
||
|
{
|
||
|
modelPath = onnxModelPath;
|
||
|
modelShape = modelInputShape;
|
||
|
classesPath = classesTxtFile;
|
||
|
cudaEnabled = runWithCuda;
|
||
|
|
||
|
loadOnnxNetwork();
|
||
|
// loadClassesFromFile(); The classes are hard-coded for this example
|
||
|
}
|
||
|
|
||
|
std::vector<Detection> Inference::runInference(const cv::Mat &input)
|
||
|
{
|
||
|
cv::Mat modelInput = input;
|
||
|
if (letterBoxForSquare && modelShape.width == modelShape.height)
|
||
|
modelInput = formatToSquare(modelInput);
|
||
|
|
||
|
cv::Mat blob;
|
||
|
cv::dnn::blobFromImage(modelInput, blob, 1.0/255.0, modelShape, cv::Scalar(), true, false);
|
||
|
net.setInput(blob);
|
||
|
|
||
|
std::vector<cv::Mat> outputs;
|
||
|
net.forward(outputs, net.getUnconnectedOutLayersNames());
|
||
|
|
||
|
int rows = outputs[0].size[1];
|
||
|
int dimensions = outputs[0].size[2];
|
||
|
|
||
|
bool yolov8 = false;
|
||
|
// yolov5 has an output of shape (batchSize, 25200, 85) (Num classes + box[x,y,w,h] + confidence[c])
|
||
|
// yolov8 has an output of shape (batchSize, 84, 8400) (Num classes + box[x,y,w,h])
|
||
|
if (dimensions > rows) // Check if the shape[2] is more than shape[1] (yolov8)
|
||
|
{
|
||
|
yolov8 = true;
|
||
|
rows = outputs[0].size[2];
|
||
|
dimensions = outputs[0].size[1];
|
||
|
|
||
|
outputs[0] = outputs[0].reshape(1, dimensions);
|
||
|
cv::transpose(outputs[0], outputs[0]);
|
||
|
}
|
||
|
float *data = (float *)outputs[0].data;
|
||
|
|
||
|
float x_factor = modelInput.cols / modelShape.width;
|
||
|
float y_factor = modelInput.rows / modelShape.height;
|
||
|
|
||
|
std::vector<int> class_ids;
|
||
|
std::vector<float> confidences;
|
||
|
std::vector<cv::Rect> boxes;
|
||
|
|
||
|
for (int i = 0; i < rows; ++i)
|
||
|
{
|
||
|
if (yolov8)
|
||
|
{
|
||
|
float *classes_scores = data+4;
|
||
|
|
||
|
cv::Mat scores(1, classes.size(), CV_32FC1, classes_scores);
|
||
|
cv::Point class_id;
|
||
|
double maxClassScore;
|
||
|
|
||
|
minMaxLoc(scores, 0, &maxClassScore, 0, &class_id);
|
||
|
|
||
|
if (maxClassScore > modelScoreThreshold)
|
||
|
{
|
||
|
confidences.push_back(maxClassScore);
|
||
|
class_ids.push_back(class_id.x);
|
||
|
|
||
|
float x = data[0];
|
||
|
float y = data[1];
|
||
|
float w = data[2];
|
||
|
float h = data[3];
|
||
|
|
||
|
int left = int((x - 0.5 * w) * x_factor);
|
||
|
int top = int((y - 0.5 * h) * y_factor);
|
||
|
|
||
|
int width = int(w * x_factor);
|
||
|
int height = int(h * y_factor);
|
||
|
|
||
|
boxes.push_back(cv::Rect(left, top, width, height));
|
||
|
}
|
||
|
}
|
||
|
else // yolov5
|
||
|
{
|
||
|
float confidence = data[4];
|
||
|
|
||
|
if (confidence >= modelConfidenceThreshold)
|
||
|
{
|
||
|
float *classes_scores = data+5;
|
||
|
|
||
|
cv::Mat scores(1, classes.size(), CV_32FC1, classes_scores);
|
||
|
cv::Point class_id;
|
||
|
double max_class_score;
|
||
|
|
||
|
minMaxLoc(scores, 0, &max_class_score, 0, &class_id);
|
||
|
|
||
|
if (max_class_score > modelScoreThreshold)
|
||
|
{
|
||
|
confidences.push_back(confidence);
|
||
|
class_ids.push_back(class_id.x);
|
||
|
|
||
|
float x = data[0];
|
||
|
float y = data[1];
|
||
|
float w = data[2];
|
||
|
float h = data[3];
|
||
|
|
||
|
int left = int((x - 0.5 * w) * x_factor);
|
||
|
int top = int((y - 0.5 * h) * y_factor);
|
||
|
|
||
|
int width = int(w * x_factor);
|
||
|
int height = int(h * y_factor);
|
||
|
|
||
|
boxes.push_back(cv::Rect(left, top, width, height));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
data += dimensions;
|
||
|
}
|
||
|
|
||
|
std::vector<int> nms_result;
|
||
|
cv::dnn::NMSBoxes(boxes, confidences, modelScoreThreshold, modelNMSThreshold, nms_result);
|
||
|
|
||
|
std::vector<Detection> detections{};
|
||
|
for (unsigned long i = 0; i < nms_result.size(); ++i)
|
||
|
{
|
||
|
int idx = nms_result[i];
|
||
|
|
||
|
Detection result;
|
||
|
result.class_id = class_ids[idx];
|
||
|
result.confidence = confidences[idx];
|
||
|
|
||
|
std::random_device rd;
|
||
|
std::mt19937 gen(rd());
|
||
|
std::uniform_int_distribution<int> dis(100, 255);
|
||
|
result.color = cv::Scalar(dis(gen),
|
||
|
dis(gen),
|
||
|
dis(gen));
|
||
|
|
||
|
result.className = classes[result.class_id];
|
||
|
result.box = boxes[idx];
|
||
|
|
||
|
detections.push_back(result);
|
||
|
}
|
||
|
|
||
|
return detections;
|
||
|
}
|
||
|
|
||
|
void Inference::loadClassesFromFile()
|
||
|
{
|
||
|
std::ifstream inputFile(classesPath);
|
||
|
if (inputFile.is_open())
|
||
|
{
|
||
|
std::string classLine;
|
||
|
while (std::getline(inputFile, classLine))
|
||
|
classes.push_back(classLine);
|
||
|
inputFile.close();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void Inference::loadOnnxNetwork()
|
||
|
{
|
||
|
net = cv::dnn::readNetFromONNX(modelPath);
|
||
|
if (cudaEnabled)
|
||
|
{
|
||
|
std::cout << "\nRunning on CUDA" << std::endl;
|
||
|
net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);
|
||
|
net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
std::cout << "\nRunning on CPU" << std::endl;
|
||
|
net.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV);
|
||
|
net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cv::Mat Inference::formatToSquare(const cv::Mat &source)
|
||
|
{
|
||
|
int col = source.cols;
|
||
|
int row = source.rows;
|
||
|
int _max = MAX(col, row);
|
||
|
cv::Mat result = cv::Mat::zeros(_max, _max, CV_8UC3);
|
||
|
source.copyTo(result(cv::Rect(0, 0, col, row)));
|
||
|
return result;
|
||
|
}
|