155 lines
6.5 KiB
Python
155 lines
6.5 KiB
Python
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||
|
|
||
|
from pathlib import Path
|
||
|
|
||
|
import torch
|
||
|
|
||
|
from ultralytics.data import YOLODataset
|
||
|
from ultralytics.data.augment import Compose, Format, v8_transforms
|
||
|
from ultralytics.models.yolo.detect import DetectionValidator
|
||
|
from ultralytics.utils import colorstr, ops
|
||
|
|
||
|
__all__ = 'RTDETRValidator', # tuple or list
|
||
|
|
||
|
|
||
|
class RTDETRDataset(YOLODataset):
|
||
|
"""
|
||
|
Real-Time DEtection and TRacking (RT-DETR) dataset class extending the base YOLODataset class.
|
||
|
|
||
|
This specialized dataset class is designed for use with the RT-DETR object detection model and is optimized for
|
||
|
real-time detection and tracking tasks.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, *args, data=None, **kwargs):
|
||
|
"""Initialize the RTDETRDataset class by inheriting from the YOLODataset class."""
|
||
|
super().__init__(*args, data=data, use_segments=False, use_keypoints=False, **kwargs)
|
||
|
|
||
|
# NOTE: add stretch version load_image for RTDETR mosaic
|
||
|
def load_image(self, i, rect_mode=False):
|
||
|
"""Loads 1 image from dataset index 'i', returns (im, resized hw)."""
|
||
|
return super().load_image(i=i, rect_mode=rect_mode)
|
||
|
|
||
|
def build_transforms(self, hyp=None):
|
||
|
"""Temporary, only for evaluation."""
|
||
|
if self.augment:
|
||
|
hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0
|
||
|
hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0
|
||
|
transforms = v8_transforms(self, self.imgsz, hyp, stretch=True)
|
||
|
else:
|
||
|
# transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), auto=False, scaleFill=True)])
|
||
|
transforms = Compose([])
|
||
|
transforms.append(
|
||
|
Format(bbox_format='xywh',
|
||
|
normalize=True,
|
||
|
return_mask=self.use_segments,
|
||
|
return_keypoint=self.use_keypoints,
|
||
|
batch_idx=True,
|
||
|
mask_ratio=hyp.mask_ratio,
|
||
|
mask_overlap=hyp.overlap_mask))
|
||
|
return transforms
|
||
|
|
||
|
|
||
|
class RTDETRValidator(DetectionValidator):
|
||
|
"""
|
||
|
RTDETRValidator extends the DetectionValidator class to provide validation capabilities specifically tailored for
|
||
|
the RT-DETR (Real-Time DETR) object detection model.
|
||
|
|
||
|
The class allows building of an RTDETR-specific dataset for validation, applies Non-maximum suppression for
|
||
|
post-processing, and updates evaluation metrics accordingly.
|
||
|
|
||
|
Example:
|
||
|
```python
|
||
|
from ultralytics.models.rtdetr import RTDETRValidator
|
||
|
|
||
|
args = dict(model='rtdetr-l.pt', data='coco8.yaml')
|
||
|
validator = RTDETRValidator(args=args)
|
||
|
validator()
|
||
|
```
|
||
|
|
||
|
Note:
|
||
|
For further details on the attributes and methods, refer to the parent DetectionValidator class.
|
||
|
"""
|
||
|
|
||
|
def build_dataset(self, img_path, mode='val', batch=None):
|
||
|
"""
|
||
|
Build an RTDETR Dataset.
|
||
|
|
||
|
Args:
|
||
|
img_path (str): Path to the folder containing images.
|
||
|
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
|
||
|
batch (int, optional): Size of batches, this is for `rect`. Defaults to None.
|
||
|
"""
|
||
|
return RTDETRDataset(
|
||
|
img_path=img_path,
|
||
|
imgsz=self.args.imgsz,
|
||
|
batch_size=batch,
|
||
|
augment=False, # no augmentation
|
||
|
hyp=self.args,
|
||
|
rect=False, # no rect
|
||
|
cache=self.args.cache or None,
|
||
|
prefix=colorstr(f'{mode}: '),
|
||
|
data=self.data)
|
||
|
|
||
|
def postprocess(self, preds):
|
||
|
"""Apply Non-maximum suppression to prediction outputs."""
|
||
|
bs, _, nd = preds[0].shape
|
||
|
bboxes, scores = preds[0].split((4, nd - 4), dim=-1)
|
||
|
bboxes *= self.args.imgsz
|
||
|
outputs = [torch.zeros((0, 6), device=bboxes.device)] * bs
|
||
|
for i, bbox in enumerate(bboxes): # (300, 4)
|
||
|
bbox = ops.xywh2xyxy(bbox)
|
||
|
score, cls = scores[i].max(-1) # (300, )
|
||
|
# Do not need threshold for evaluation as only got 300 boxes here
|
||
|
# idx = score > self.args.conf
|
||
|
pred = torch.cat([bbox, score[..., None], cls[..., None]], dim=-1) # filter
|
||
|
# Sort by confidence to correctly get internal metrics
|
||
|
pred = pred[score.argsort(descending=True)]
|
||
|
outputs[i] = pred # [idx]
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
def update_metrics(self, preds, batch):
|
||
|
"""Metrics."""
|
||
|
for si, pred in enumerate(preds):
|
||
|
idx = batch['batch_idx'] == si
|
||
|
cls = batch['cls'][idx]
|
||
|
bbox = batch['bboxes'][idx]
|
||
|
nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions
|
||
|
shape = batch['ori_shape'][si]
|
||
|
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
|
||
|
self.seen += 1
|
||
|
|
||
|
if npr == 0:
|
||
|
if nl:
|
||
|
self.stats.append((correct_bboxes, *torch.zeros((2, 0), device=self.device), cls.squeeze(-1)))
|
||
|
if self.args.plots:
|
||
|
self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1))
|
||
|
continue
|
||
|
|
||
|
# Predictions
|
||
|
if self.args.single_cls:
|
||
|
pred[:, 5] = 0
|
||
|
predn = pred.clone()
|
||
|
predn[..., [0, 2]] *= shape[1] / self.args.imgsz # native-space pred
|
||
|
predn[..., [1, 3]] *= shape[0] / self.args.imgsz # native-space pred
|
||
|
|
||
|
# Evaluate
|
||
|
if nl:
|
||
|
tbox = ops.xywh2xyxy(bbox) # target boxes
|
||
|
tbox[..., [0, 2]] *= shape[1] # native-space pred
|
||
|
tbox[..., [1, 3]] *= shape[0] # native-space pred
|
||
|
labelsn = torch.cat((cls, tbox), 1) # native-space labels
|
||
|
# NOTE: To get correct metrics, the inputs of `_process_batch` should always be float32 type.
|
||
|
correct_bboxes = self._process_batch(predn.float(), labelsn)
|
||
|
# TODO: maybe remove these `self.` arguments as they already are member variable
|
||
|
if self.args.plots:
|
||
|
self.confusion_matrix.process_batch(predn, labelsn)
|
||
|
self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], cls.squeeze(-1))) # (conf, pcls, tcls)
|
||
|
|
||
|
# Save
|
||
|
if self.args.save_json:
|
||
|
self.pred_to_json(predn, batch['im_file'][si])
|
||
|
if self.args.save_txt:
|
||
|
file = self.save_dir / 'labels' / f'{Path(batch["im_file"][si]).stem}.txt'
|
||
|
self.save_one_txt(predn, self.args.save_conf, shape, file)
|