833 lines
36 KiB
Python
833 lines
36 KiB
Python
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||
|
|
||
|
import contextlib
|
||
|
from copy import deepcopy
|
||
|
from pathlib import Path
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
|
||
|
from ultralytics.nn.modules import (AIFI, C1, C2, C3, C3TR, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x,
|
||
|
Classify, Concat, Conv, Conv2, ConvTranspose, Detect, DWConv, DWConvTranspose2d,
|
||
|
Focus, GhostBottleneck, GhostConv, HGBlock, HGStem, Pose, RepC3, RepConv,
|
||
|
RTDETRDecoder, Segment)
|
||
|
from ultralytics.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, colorstr, emojis, yaml_load
|
||
|
from ultralytics.utils.checks import check_requirements, check_suffix, check_yaml
|
||
|
from ultralytics.utils.loss import v8ClassificationLoss, v8DetectionLoss, v8PoseLoss, v8SegmentationLoss
|
||
|
from ultralytics.utils.plotting import feature_visualization
|
||
|
from ultralytics.utils.torch_utils import (fuse_conv_and_bn, fuse_deconv_and_bn, initialize_weights, intersect_dicts,
|
||
|
make_divisible, model_info, scale_img, time_sync)
|
||
|
|
||
|
try:
|
||
|
import thop
|
||
|
except ImportError:
|
||
|
thop = None
|
||
|
|
||
|
|
||
|
class BaseModel(nn.Module):
|
||
|
"""The BaseModel class serves as a base class for all the models in the Ultralytics YOLO family."""
|
||
|
|
||
|
def forward(self, x, *args, **kwargs):
|
||
|
"""
|
||
|
Forward pass of the model on a single scale. Wrapper for `_forward_once` method.
|
||
|
|
||
|
Args:
|
||
|
x (torch.Tensor | dict): The input image tensor or a dict including image tensor and gt labels.
|
||
|
|
||
|
Returns:
|
||
|
(torch.Tensor): The output of the network.
|
||
|
"""
|
||
|
if isinstance(x, dict): # for cases of training and validating while training.
|
||
|
return self.loss(x, *args, **kwargs)
|
||
|
return self.predict(x, *args, **kwargs)
|
||
|
|
||
|
def predict(self, x, profile=False, visualize=False, augment=False):
|
||
|
"""
|
||
|
Perform a forward pass through the network.
|
||
|
|
||
|
Args:
|
||
|
x (torch.Tensor): The input tensor to the model.
|
||
|
profile (bool): Print the computation time of each layer if True, defaults to False.
|
||
|
visualize (bool): Save the feature maps of the model if True, defaults to False.
|
||
|
augment (bool): Augment image during prediction, defaults to False.
|
||
|
|
||
|
Returns:
|
||
|
(torch.Tensor): The last output of the model.
|
||
|
"""
|
||
|
if augment:
|
||
|
return self._predict_augment(x)
|
||
|
return self._predict_once(x, profile, visualize)
|
||
|
|
||
|
def _predict_once(self, x, profile=False, visualize=False):
|
||
|
"""
|
||
|
Perform a forward pass through the network.
|
||
|
|
||
|
Args:
|
||
|
x (torch.Tensor): The input tensor to the model.
|
||
|
profile (bool): Print the computation time of each layer if True, defaults to False.
|
||
|
visualize (bool): Save the feature maps of the model if True, defaults to False.
|
||
|
|
||
|
Returns:
|
||
|
(torch.Tensor): The last output of the model.
|
||
|
"""
|
||
|
y, dt = [], [] # outputs
|
||
|
for m in self.model:
|
||
|
if m.f != -1: # if not from previous layer
|
||
|
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
||
|
if profile:
|
||
|
self._profile_one_layer(m, x, dt)
|
||
|
x = m(x) # run
|
||
|
y.append(x if m.i in self.save else None) # save output
|
||
|
if visualize:
|
||
|
feature_visualization(x, m.type, m.i, save_dir=visualize)
|
||
|
return x
|
||
|
|
||
|
def _predict_augment(self, x):
|
||
|
"""Perform augmentations on input image x and return augmented inference."""
|
||
|
LOGGER.warning(f'WARNING ⚠️ {self.__class__.__name__} does not support augmented inference yet. '
|
||
|
f'Reverting to single-scale inference instead.')
|
||
|
return self._predict_once(x)
|
||
|
|
||
|
def _profile_one_layer(self, m, x, dt):
|
||
|
"""
|
||
|
Profile the computation time and FLOPs of a single layer of the model on a given input. Appends the results to
|
||
|
the provided list.
|
||
|
|
||
|
Args:
|
||
|
m (nn.Module): The layer to be profiled.
|
||
|
x (torch.Tensor): The input data to the layer.
|
||
|
dt (list): A list to store the computation time of the layer.
|
||
|
|
||
|
Returns:
|
||
|
None
|
||
|
"""
|
||
|
c = m == self.model[-1] and isinstance(x, list) # is final layer list, copy input as inplace fix
|
||
|
flops = thop.profile(m, inputs=[x.copy() if c else x], verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
|
||
|
t = time_sync()
|
||
|
for _ in range(10):
|
||
|
m(x.copy() if c else x)
|
||
|
dt.append((time_sync() - t) * 100)
|
||
|
if m == self.model[0]:
|
||
|
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module")
|
||
|
LOGGER.info(f'{dt[-1]:10.2f} {flops:10.2f} {m.np:10.0f} {m.type}')
|
||
|
if c:
|
||
|
LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
|
||
|
|
||
|
def fuse(self, verbose=True):
|
||
|
"""
|
||
|
Fuse the `Conv2d()` and `BatchNorm2d()` layers of the model into a single layer, in order to improve the
|
||
|
computation efficiency.
|
||
|
|
||
|
Returns:
|
||
|
(nn.Module): The fused model is returned.
|
||
|
"""
|
||
|
if not self.is_fused():
|
||
|
for m in self.model.modules():
|
||
|
if isinstance(m, (Conv, Conv2, DWConv)) and hasattr(m, 'bn'):
|
||
|
if isinstance(m, Conv2):
|
||
|
m.fuse_convs()
|
||
|
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
||
|
delattr(m, 'bn') # remove batchnorm
|
||
|
m.forward = m.forward_fuse # update forward
|
||
|
if isinstance(m, ConvTranspose) and hasattr(m, 'bn'):
|
||
|
m.conv_transpose = fuse_deconv_and_bn(m.conv_transpose, m.bn)
|
||
|
delattr(m, 'bn') # remove batchnorm
|
||
|
m.forward = m.forward_fuse # update forward
|
||
|
if isinstance(m, RepConv):
|
||
|
m.fuse_convs()
|
||
|
m.forward = m.forward_fuse # update forward
|
||
|
self.info(verbose=verbose)
|
||
|
|
||
|
return self
|
||
|
|
||
|
def is_fused(self, thresh=10):
|
||
|
"""
|
||
|
Check if the model has less than a certain threshold of BatchNorm layers.
|
||
|
|
||
|
Args:
|
||
|
thresh (int, optional): The threshold number of BatchNorm layers. Default is 10.
|
||
|
|
||
|
Returns:
|
||
|
(bool): True if the number of BatchNorm layers in the model is less than the threshold, False otherwise.
|
||
|
"""
|
||
|
bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d()
|
||
|
return sum(isinstance(v, bn) for v in self.modules()) < thresh # True if < 'thresh' BatchNorm layers in model
|
||
|
|
||
|
def info(self, detailed=False, verbose=True, imgsz=640):
|
||
|
"""
|
||
|
Prints model information.
|
||
|
|
||
|
Args:
|
||
|
detailed (bool): if True, prints out detailed information about the model. Defaults to False
|
||
|
verbose (bool): if True, prints out the model information. Defaults to False
|
||
|
imgsz (int): the size of the image that the model will be trained on. Defaults to 640
|
||
|
"""
|
||
|
return model_info(self, detailed=detailed, verbose=verbose, imgsz=imgsz)
|
||
|
|
||
|
def _apply(self, fn):
|
||
|
"""
|
||
|
Applies a function to all the tensors in the model that are not parameters or registered buffers.
|
||
|
|
||
|
Args:
|
||
|
fn (function): the function to apply to the model
|
||
|
|
||
|
Returns:
|
||
|
(BaseModel): An updated BaseModel object.
|
||
|
"""
|
||
|
self = super()._apply(fn)
|
||
|
m = self.model[-1] # Detect()
|
||
|
if isinstance(m, (Detect, Segment)):
|
||
|
m.stride = fn(m.stride)
|
||
|
m.anchors = fn(m.anchors)
|
||
|
m.strides = fn(m.strides)
|
||
|
return self
|
||
|
|
||
|
def load(self, weights, verbose=True):
|
||
|
"""
|
||
|
Load the weights into the model.
|
||
|
|
||
|
Args:
|
||
|
weights (dict | torch.nn.Module): The pre-trained weights to be loaded.
|
||
|
verbose (bool, optional): Whether to log the transfer progress. Defaults to True.
|
||
|
"""
|
||
|
model = weights['model'] if isinstance(weights, dict) else weights # torchvision models are not dicts
|
||
|
csd = model.float().state_dict() # checkpoint state_dict as FP32
|
||
|
csd = intersect_dicts(csd, self.state_dict()) # intersect
|
||
|
self.load_state_dict(csd, strict=False) # load
|
||
|
if verbose:
|
||
|
LOGGER.info(f'Transferred {len(csd)}/{len(self.model.state_dict())} items from pretrained weights')
|
||
|
|
||
|
def loss(self, batch, preds=None):
|
||
|
"""
|
||
|
Compute loss.
|
||
|
|
||
|
Args:
|
||
|
batch (dict): Batch to compute loss on
|
||
|
preds (torch.Tensor | List[torch.Tensor]): Predictions.
|
||
|
"""
|
||
|
if not hasattr(self, 'criterion'):
|
||
|
self.criterion = self.init_criterion()
|
||
|
|
||
|
preds = self.forward(batch['img']) if preds is None else preds
|
||
|
return self.criterion(preds, batch)
|
||
|
|
||
|
def init_criterion(self):
|
||
|
"""Initialize the loss criterion for the BaseModel."""
|
||
|
raise NotImplementedError('compute_loss() needs to be implemented by task heads')
|
||
|
|
||
|
|
||
|
class DetectionModel(BaseModel):
|
||
|
"""YOLOv8 detection model."""
|
||
|
|
||
|
def __init__(self, cfg='yolov8n.yaml', ch=3, nc=None, verbose=True): # model, input channels, number of classes
|
||
|
"""Initialize the YOLOv8 detection model with the given config and parameters."""
|
||
|
super().__init__()
|
||
|
self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg) # cfg dict
|
||
|
|
||
|
# Define model
|
||
|
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
|
||
|
if nc and nc != self.yaml['nc']:
|
||
|
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
|
||
|
self.yaml['nc'] = nc # override YAML value
|
||
|
self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose) # model, savelist
|
||
|
self.names = {i: f'{i}' for i in range(self.yaml['nc'])} # default names dict
|
||
|
self.inplace = self.yaml.get('inplace', True)
|
||
|
|
||
|
# Build strides
|
||
|
m = self.model[-1] # Detect()
|
||
|
if isinstance(m, (Detect, Segment, Pose)):
|
||
|
s = 256 # 2x min stride
|
||
|
m.inplace = self.inplace
|
||
|
forward = lambda x: self.forward(x)[0] if isinstance(m, (Segment, Pose)) else self.forward(x)
|
||
|
m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward
|
||
|
self.stride = m.stride
|
||
|
m.bias_init() # only run once
|
||
|
else:
|
||
|
self.stride = torch.Tensor([32]) # default stride for i.e. RTDETR
|
||
|
|
||
|
# Init weights, biases
|
||
|
initialize_weights(self)
|
||
|
if verbose:
|
||
|
self.info()
|
||
|
LOGGER.info('')
|
||
|
|
||
|
def _predict_augment(self, x):
|
||
|
"""Perform augmentations on input image x and return augmented inference and train outputs."""
|
||
|
img_size = x.shape[-2:] # height, width
|
||
|
s = [1, 0.83, 0.67] # scales
|
||
|
f = [None, 3, None] # flips (2-ud, 3-lr)
|
||
|
y = [] # outputs
|
||
|
for si, fi in zip(s, f):
|
||
|
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
|
||
|
yi = super().predict(xi)[0] # forward
|
||
|
yi = self._descale_pred(yi, fi, si, img_size)
|
||
|
y.append(yi)
|
||
|
y = self._clip_augmented(y) # clip augmented tails
|
||
|
return torch.cat(y, -1), None # augmented inference, train
|
||
|
|
||
|
@staticmethod
|
||
|
def _descale_pred(p, flips, scale, img_size, dim=1):
|
||
|
"""De-scale predictions following augmented inference (inverse operation)."""
|
||
|
p[:, :4] /= scale # de-scale
|
||
|
x, y, wh, cls = p.split((1, 1, 2, p.shape[dim] - 4), dim)
|
||
|
if flips == 2:
|
||
|
y = img_size[0] - y # de-flip ud
|
||
|
elif flips == 3:
|
||
|
x = img_size[1] - x # de-flip lr
|
||
|
return torch.cat((x, y, wh, cls), dim)
|
||
|
|
||
|
def _clip_augmented(self, y):
|
||
|
"""Clip YOLO augmented inference tails."""
|
||
|
nl = self.model[-1].nl # number of detection layers (P3-P5)
|
||
|
g = sum(4 ** x for x in range(nl)) # grid points
|
||
|
e = 1 # exclude layer count
|
||
|
i = (y[0].shape[-1] // g) * sum(4 ** x for x in range(e)) # indices
|
||
|
y[0] = y[0][..., :-i] # large
|
||
|
i = (y[-1].shape[-1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
|
||
|
y[-1] = y[-1][..., i:] # small
|
||
|
return y
|
||
|
|
||
|
def init_criterion(self):
|
||
|
"""Initialize the loss criterion for the DetectionModel."""
|
||
|
return v8DetectionLoss(self)
|
||
|
|
||
|
|
||
|
class SegmentationModel(DetectionModel):
|
||
|
"""YOLOv8 segmentation model."""
|
||
|
|
||
|
def __init__(self, cfg='yolov8n-seg.yaml', ch=3, nc=None, verbose=True):
|
||
|
"""Initialize YOLOv8 segmentation model with given config and parameters."""
|
||
|
super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)
|
||
|
|
||
|
def init_criterion(self):
|
||
|
"""Initialize the loss criterion for the SegmentationModel."""
|
||
|
return v8SegmentationLoss(self)
|
||
|
|
||
|
|
||
|
class PoseModel(DetectionModel):
|
||
|
"""YOLOv8 pose model."""
|
||
|
|
||
|
def __init__(self, cfg='yolov8n-pose.yaml', ch=3, nc=None, data_kpt_shape=(None, None), verbose=True):
|
||
|
"""Initialize YOLOv8 Pose model."""
|
||
|
if not isinstance(cfg, dict):
|
||
|
cfg = yaml_model_load(cfg) # load model YAML
|
||
|
if any(data_kpt_shape) and list(data_kpt_shape) != list(cfg['kpt_shape']):
|
||
|
LOGGER.info(f"Overriding model.yaml kpt_shape={cfg['kpt_shape']} with kpt_shape={data_kpt_shape}")
|
||
|
cfg['kpt_shape'] = data_kpt_shape
|
||
|
super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)
|
||
|
|
||
|
def init_criterion(self):
|
||
|
"""Initialize the loss criterion for the PoseModel."""
|
||
|
return v8PoseLoss(self)
|
||
|
|
||
|
|
||
|
class ClassificationModel(BaseModel):
|
||
|
"""YOLOv8 classification model."""
|
||
|
|
||
|
def __init__(self, cfg='yolov8n-cls.yaml', ch=3, nc=None, verbose=True):
|
||
|
"""Init ClassificationModel with YAML, channels, number of classes, verbose flag."""
|
||
|
super().__init__()
|
||
|
self._from_yaml(cfg, ch, nc, verbose)
|
||
|
|
||
|
def _from_yaml(self, cfg, ch, nc, verbose):
|
||
|
"""Set YOLOv8 model configurations and define the model architecture."""
|
||
|
self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg) # cfg dict
|
||
|
|
||
|
# Define model
|
||
|
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
|
||
|
if nc and nc != self.yaml['nc']:
|
||
|
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
|
||
|
self.yaml['nc'] = nc # override YAML value
|
||
|
elif not nc and not self.yaml.get('nc', None):
|
||
|
raise ValueError('nc not specified. Must specify nc in model.yaml or function arguments.')
|
||
|
self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose) # model, savelist
|
||
|
self.stride = torch.Tensor([1]) # no stride constraints
|
||
|
self.names = {i: f'{i}' for i in range(self.yaml['nc'])} # default names dict
|
||
|
self.info()
|
||
|
|
||
|
@staticmethod
|
||
|
def reshape_outputs(model, nc):
|
||
|
"""Update a TorchVision classification model to class count 'n' if required."""
|
||
|
name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1] # last module
|
||
|
if isinstance(m, Classify): # YOLO Classify() head
|
||
|
if m.linear.out_features != nc:
|
||
|
m.linear = nn.Linear(m.linear.in_features, nc)
|
||
|
elif isinstance(m, nn.Linear): # ResNet, EfficientNet
|
||
|
if m.out_features != nc:
|
||
|
setattr(model, name, nn.Linear(m.in_features, nc))
|
||
|
elif isinstance(m, nn.Sequential):
|
||
|
types = [type(x) for x in m]
|
||
|
if nn.Linear in types:
|
||
|
i = types.index(nn.Linear) # nn.Linear index
|
||
|
if m[i].out_features != nc:
|
||
|
m[i] = nn.Linear(m[i].in_features, nc)
|
||
|
elif nn.Conv2d in types:
|
||
|
i = types.index(nn.Conv2d) # nn.Conv2d index
|
||
|
if m[i].out_channels != nc:
|
||
|
m[i] = nn.Conv2d(m[i].in_channels, nc, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None)
|
||
|
|
||
|
def init_criterion(self):
|
||
|
"""Initialize the loss criterion for the ClassificationModel."""
|
||
|
return v8ClassificationLoss()
|
||
|
|
||
|
|
||
|
class RTDETRDetectionModel(DetectionModel):
|
||
|
"""
|
||
|
RTDETR (Real-time DEtection and Tracking using Transformers) Detection Model class.
|
||
|
|
||
|
This class is responsible for constructing the RTDETR architecture, defining loss functions, and facilitating both
|
||
|
the training and inference processes. RTDETR is an object detection and tracking model that extends from the
|
||
|
DetectionModel base class.
|
||
|
|
||
|
Attributes:
|
||
|
cfg (str): The configuration file path or preset string. Default is 'rtdetr-l.yaml'.
|
||
|
ch (int): Number of input channels. Default is 3 (RGB).
|
||
|
nc (int, optional): Number of classes for object detection. Default is None.
|
||
|
verbose (bool): Specifies if summary statistics are shown during initialization. Default is True.
|
||
|
|
||
|
Methods:
|
||
|
init_criterion: Initializes the criterion used for loss calculation.
|
||
|
loss: Computes and returns the loss during training.
|
||
|
predict: Performs a forward pass through the network and returns the output.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, cfg='rtdetr-l.yaml', ch=3, nc=None, verbose=True):
|
||
|
"""
|
||
|
Initialize the RTDETRDetectionModel.
|
||
|
|
||
|
Args:
|
||
|
cfg (str): Configuration file name or path.
|
||
|
ch (int): Number of input channels.
|
||
|
nc (int, optional): Number of classes. Defaults to None.
|
||
|
verbose (bool, optional): Print additional information during initialization. Defaults to True.
|
||
|
"""
|
||
|
super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)
|
||
|
|
||
|
def init_criterion(self):
|
||
|
"""Initialize the loss criterion for the RTDETRDetectionModel."""
|
||
|
from ultralytics.models.utils.loss import RTDETRDetectionLoss
|
||
|
|
||
|
return RTDETRDetectionLoss(nc=self.nc, use_vfl=True)
|
||
|
|
||
|
def loss(self, batch, preds=None):
|
||
|
"""
|
||
|
Compute the loss for the given batch of data.
|
||
|
|
||
|
Args:
|
||
|
batch (dict): Dictionary containing image and label data.
|
||
|
preds (torch.Tensor, optional): Precomputed model predictions. Defaults to None.
|
||
|
|
||
|
Returns:
|
||
|
(tuple): A tuple containing the total loss and main three losses in a tensor.
|
||
|
"""
|
||
|
if not hasattr(self, 'criterion'):
|
||
|
self.criterion = self.init_criterion()
|
||
|
|
||
|
img = batch['img']
|
||
|
# NOTE: preprocess gt_bbox and gt_labels to list.
|
||
|
bs = len(img)
|
||
|
batch_idx = batch['batch_idx']
|
||
|
gt_groups = [(batch_idx == i).sum().item() for i in range(bs)]
|
||
|
targets = {
|
||
|
'cls': batch['cls'].to(img.device, dtype=torch.long).view(-1),
|
||
|
'bboxes': batch['bboxes'].to(device=img.device),
|
||
|
'batch_idx': batch_idx.to(img.device, dtype=torch.long).view(-1),
|
||
|
'gt_groups': gt_groups}
|
||
|
|
||
|
preds = self.predict(img, batch=targets) if preds is None else preds
|
||
|
dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta = preds if self.training else preds[1]
|
||
|
if dn_meta is None:
|
||
|
dn_bboxes, dn_scores = None, None
|
||
|
else:
|
||
|
dn_bboxes, dec_bboxes = torch.split(dec_bboxes, dn_meta['dn_num_split'], dim=2)
|
||
|
dn_scores, dec_scores = torch.split(dec_scores, dn_meta['dn_num_split'], dim=2)
|
||
|
|
||
|
dec_bboxes = torch.cat([enc_bboxes.unsqueeze(0), dec_bboxes]) # (7, bs, 300, 4)
|
||
|
dec_scores = torch.cat([enc_scores.unsqueeze(0), dec_scores])
|
||
|
|
||
|
loss = self.criterion((dec_bboxes, dec_scores),
|
||
|
targets,
|
||
|
dn_bboxes=dn_bboxes,
|
||
|
dn_scores=dn_scores,
|
||
|
dn_meta=dn_meta)
|
||
|
# NOTE: There are like 12 losses in RTDETR, backward with all losses but only show the main three losses.
|
||
|
return sum(loss.values()), torch.as_tensor([loss[k].detach() for k in ['loss_giou', 'loss_class', 'loss_bbox']],
|
||
|
device=img.device)
|
||
|
|
||
|
def predict(self, x, profile=False, visualize=False, batch=None, augment=False):
|
||
|
"""
|
||
|
Perform a forward pass through the model.
|
||
|
|
||
|
Args:
|
||
|
x (torch.Tensor): The input tensor.
|
||
|
profile (bool, optional): If True, profile the computation time for each layer. Defaults to False.
|
||
|
visualize (bool, optional): If True, save feature maps for visualization. Defaults to False.
|
||
|
batch (dict, optional): Ground truth data for evaluation. Defaults to None.
|
||
|
augment (bool, optional): If True, perform data augmentation during inference. Defaults to False.
|
||
|
|
||
|
Returns:
|
||
|
(torch.Tensor): Model's output tensor.
|
||
|
"""
|
||
|
y, dt = [], [] # outputs
|
||
|
for m in self.model[:-1]: # except the head part
|
||
|
if m.f != -1: # if not from previous layer
|
||
|
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
||
|
if profile:
|
||
|
self._profile_one_layer(m, x, dt)
|
||
|
x = m(x) # run
|
||
|
y.append(x if m.i in self.save else None) # save output
|
||
|
if visualize:
|
||
|
feature_visualization(x, m.type, m.i, save_dir=visualize)
|
||
|
head = self.model[-1]
|
||
|
x = head([y[j] for j in head.f], batch) # head inference
|
||
|
return x
|
||
|
|
||
|
|
||
|
class Ensemble(nn.ModuleList):
|
||
|
"""Ensemble of models."""
|
||
|
|
||
|
def __init__(self):
|
||
|
"""Initialize an ensemble of models."""
|
||
|
super().__init__()
|
||
|
|
||
|
def forward(self, x, augment=False, profile=False, visualize=False):
|
||
|
"""Function generates the YOLO network's final layer."""
|
||
|
y = [module(x, augment, profile, visualize)[0] for module in self]
|
||
|
# y = torch.stack(y).max(0)[0] # max ensemble
|
||
|
# y = torch.stack(y).mean(0) # mean ensemble
|
||
|
y = torch.cat(y, 2) # nms ensemble, y shape(B, HW, C)
|
||
|
return y, None # inference, train output
|
||
|
|
||
|
|
||
|
# Functions ------------------------------------------------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
@contextlib.contextmanager
|
||
|
def temporary_modules(modules=None):
|
||
|
"""
|
||
|
Context manager for temporarily adding or modifying modules in Python's module cache (`sys.modules`).
|
||
|
|
||
|
This function can be used to change the module paths during runtime. It's useful when refactoring code,
|
||
|
where you've moved a module from one location to another, but you still want to support the old import
|
||
|
paths for backwards compatibility.
|
||
|
|
||
|
Args:
|
||
|
modules (dict, optional): A dictionary mapping old module paths to new module paths.
|
||
|
|
||
|
Example:
|
||
|
```python
|
||
|
with temporary_modules({'old.module.path': 'new.module.path'}):
|
||
|
import old.module.path # this will now import new.module.path
|
||
|
```
|
||
|
|
||
|
Note:
|
||
|
The changes are only in effect inside the context manager and are undone once the context manager exits.
|
||
|
Be aware that directly manipulating `sys.modules` can lead to unpredictable results, especially in larger
|
||
|
applications or libraries. Use this function with caution.
|
||
|
"""
|
||
|
if not modules:
|
||
|
modules = {}
|
||
|
|
||
|
import importlib
|
||
|
import sys
|
||
|
try:
|
||
|
# Set modules in sys.modules under their old name
|
||
|
for old, new in modules.items():
|
||
|
sys.modules[old] = importlib.import_module(new)
|
||
|
|
||
|
yield
|
||
|
finally:
|
||
|
# Remove the temporary module paths
|
||
|
for old in modules:
|
||
|
if old in sys.modules:
|
||
|
del sys.modules[old]
|
||
|
|
||
|
|
||
|
def torch_safe_load(weight):
|
||
|
"""
|
||
|
This function attempts to load a PyTorch model with the torch.load() function. If a ModuleNotFoundError is raised,
|
||
|
it catches the error, logs a warning message, and attempts to install the missing module via the
|
||
|
check_requirements() function. After installation, the function again attempts to load the model using torch.load().
|
||
|
|
||
|
Args:
|
||
|
weight (str): The file path of the PyTorch model.
|
||
|
|
||
|
Returns:
|
||
|
(dict): The loaded PyTorch model.
|
||
|
"""
|
||
|
from ultralytics.utils.downloads import attempt_download_asset
|
||
|
|
||
|
check_suffix(file=weight, suffix='.pt')
|
||
|
file = attempt_download_asset(weight) # search online if missing locally
|
||
|
try:
|
||
|
with temporary_modules({
|
||
|
'ultralytics.yolo.utils': 'ultralytics.utils',
|
||
|
'ultralytics.yolo.v8': 'ultralytics.models.yolo',
|
||
|
'ultralytics.yolo.data': 'ultralytics.data'}): # for legacy 8.0 Classify and Pose models
|
||
|
return torch.load(file, map_location='cpu'), file # load
|
||
|
|
||
|
except ModuleNotFoundError as e: # e.name is missing module name
|
||
|
if e.name == 'models':
|
||
|
raise TypeError(
|
||
|
emojis(f'ERROR ❌️ {weight} appears to be an Ultralytics YOLOv5 model originally trained '
|
||
|
f'with https://github.com/ultralytics/yolov5.\nThis model is NOT forwards compatible with '
|
||
|
f'YOLOv8 at https://github.com/ultralytics/ultralytics.'
|
||
|
f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to "
|
||
|
f"run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'")) from e
|
||
|
LOGGER.warning(f"WARNING ⚠️ {weight} appears to require '{e.name}', which is not in ultralytics requirements."
|
||
|
f"\nAutoInstall will run now for '{e.name}' but this feature will be removed in the future."
|
||
|
f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to "
|
||
|
f"run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'")
|
||
|
check_requirements(e.name) # install missing module
|
||
|
|
||
|
return torch.load(file, map_location='cpu'), file # load
|
||
|
|
||
|
|
||
|
def attempt_load_weights(weights, device=None, inplace=True, fuse=False):
|
||
|
"""Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a."""
|
||
|
|
||
|
ensemble = Ensemble()
|
||
|
for w in weights if isinstance(weights, list) else [weights]:
|
||
|
ckpt, w = torch_safe_load(w) # load ckpt
|
||
|
args = {**DEFAULT_CFG_DICT, **ckpt['train_args']} if 'train_args' in ckpt else None # combined args
|
||
|
model = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
|
||
|
|
||
|
# Model compatibility updates
|
||
|
model.args = args # attach args to model
|
||
|
model.pt_path = w # attach *.pt file path to model
|
||
|
model.task = guess_model_task(model)
|
||
|
if not hasattr(model, 'stride'):
|
||
|
model.stride = torch.tensor([32.])
|
||
|
|
||
|
# Append
|
||
|
ensemble.append(model.fuse().eval() if fuse and hasattr(model, 'fuse') else model.eval()) # model in eval mode
|
||
|
|
||
|
# Module updates
|
||
|
for m in ensemble.modules():
|
||
|
t = type(m)
|
||
|
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment):
|
||
|
m.inplace = inplace
|
||
|
elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
|
||
|
m.recompute_scale_factor = None # torch 1.11.0 compatibility
|
||
|
|
||
|
# Return model
|
||
|
if len(ensemble) == 1:
|
||
|
return ensemble[-1]
|
||
|
|
||
|
# Return ensemble
|
||
|
LOGGER.info(f'Ensemble created with {weights}\n')
|
||
|
for k in 'names', 'nc', 'yaml':
|
||
|
setattr(ensemble, k, getattr(ensemble[0], k))
|
||
|
ensemble.stride = ensemble[torch.argmax(torch.tensor([m.stride.max() for m in ensemble])).int()].stride
|
||
|
assert all(ensemble[0].nc == m.nc for m in ensemble), f'Models differ in class counts {[m.nc for m in ensemble]}'
|
||
|
return ensemble
|
||
|
|
||
|
|
||
|
def attempt_load_one_weight(weight, device=None, inplace=True, fuse=False):
|
||
|
"""Loads a single model weights."""
|
||
|
ckpt, weight = torch_safe_load(weight) # load ckpt
|
||
|
args = {**DEFAULT_CFG_DICT, **(ckpt.get('train_args', {}))} # combine model and default args, preferring model args
|
||
|
model = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
|
||
|
|
||
|
# Model compatibility updates
|
||
|
model.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # attach args to model
|
||
|
model.pt_path = weight # attach *.pt file path to model
|
||
|
model.task = guess_model_task(model)
|
||
|
if not hasattr(model, 'stride'):
|
||
|
model.stride = torch.tensor([32.])
|
||
|
|
||
|
model = model.fuse().eval() if fuse and hasattr(model, 'fuse') else model.eval() # model in eval mode
|
||
|
|
||
|
# Module updates
|
||
|
for m in model.modules():
|
||
|
t = type(m)
|
||
|
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment):
|
||
|
m.inplace = inplace
|
||
|
elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
|
||
|
m.recompute_scale_factor = None # torch 1.11.0 compatibility
|
||
|
|
||
|
# Return model and ckpt
|
||
|
return model, ckpt
|
||
|
|
||
|
|
||
|
def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)
|
||
|
"""Parse a YOLO model.yaml dictionary into a PyTorch model."""
|
||
|
import ast
|
||
|
|
||
|
# Args
|
||
|
max_channels = float('inf')
|
||
|
nc, act, scales = (d.get(x) for x in ('nc', 'activation', 'scales'))
|
||
|
depth, width, kpt_shape = (d.get(x, 1.0) for x in ('depth_multiple', 'width_multiple', 'kpt_shape'))
|
||
|
if scales:
|
||
|
scale = d.get('scale')
|
||
|
if not scale:
|
||
|
scale = tuple(scales.keys())[0]
|
||
|
LOGGER.warning(f"WARNING ⚠️ no model scale passed. Assuming scale='{scale}'.")
|
||
|
depth, width, max_channels = scales[scale]
|
||
|
|
||
|
if act:
|
||
|
Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
|
||
|
if verbose:
|
||
|
LOGGER.info(f"{colorstr('activation:')} {act}") # print
|
||
|
|
||
|
if verbose:
|
||
|
LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10} {'module':<45}{'arguments':<30}")
|
||
|
ch = [ch]
|
||
|
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
||
|
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
||
|
m = getattr(torch.nn, m[3:]) if 'nn.' in m else globals()[m] # get module
|
||
|
for j, a in enumerate(args):
|
||
|
if isinstance(a, str):
|
||
|
with contextlib.suppress(ValueError):
|
||
|
args[j] = locals()[a] if a in locals() else ast.literal_eval(a)
|
||
|
|
||
|
n = n_ = max(round(n * depth), 1) if n > 1 else n # depth gain
|
||
|
if m in (Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus,
|
||
|
BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x, RepC3):
|
||
|
c1, c2 = ch[f], args[0]
|
||
|
if c2 != nc: # if c2 not equal to number of classes (i.e. for Classify() output)
|
||
|
c2 = make_divisible(min(c2, max_channels) * width, 8)
|
||
|
|
||
|
args = [c1, c2, *args[1:]]
|
||
|
if m in (BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, C3x, RepC3):
|
||
|
args.insert(2, n) # number of repeats
|
||
|
n = 1
|
||
|
elif m is AIFI:
|
||
|
args = [ch[f], *args]
|
||
|
elif m in (HGStem, HGBlock):
|
||
|
c1, cm, c2 = ch[f], args[0], args[1]
|
||
|
args = [c1, cm, c2, *args[2:]]
|
||
|
if m is HGBlock:
|
||
|
args.insert(4, n) # number of repeats
|
||
|
n = 1
|
||
|
|
||
|
elif m is nn.BatchNorm2d:
|
||
|
args = [ch[f]]
|
||
|
elif m is Concat:
|
||
|
c2 = sum(ch[x] for x in f)
|
||
|
elif m in (Detect, Segment, Pose):
|
||
|
args.append([ch[x] for x in f])
|
||
|
if m is Segment:
|
||
|
args[2] = make_divisible(min(args[2], max_channels) * width, 8)
|
||
|
elif m is RTDETRDecoder: # special case, channels arg must be passed in index 1
|
||
|
args.insert(1, [ch[x] for x in f])
|
||
|
else:
|
||
|
c2 = ch[f]
|
||
|
|
||
|
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
|
||
|
t = str(m)[8:-2].replace('__main__.', '') # module type
|
||
|
m.np = sum(x.numel() for x in m_.parameters()) # number params
|
||
|
m_.i, m_.f, m_.type = i, f, t # attach index, 'from' index, type
|
||
|
if verbose:
|
||
|
LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f} {t:<45}{str(args):<30}') # print
|
||
|
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
||
|
layers.append(m_)
|
||
|
if i == 0:
|
||
|
ch = []
|
||
|
ch.append(c2)
|
||
|
return nn.Sequential(*layers), sorted(save)
|
||
|
|
||
|
|
||
|
def yaml_model_load(path):
|
||
|
"""Load a YOLOv8 model from a YAML file."""
|
||
|
import re
|
||
|
|
||
|
path = Path(path)
|
||
|
if path.stem in (f'yolov{d}{x}6' for x in 'nsmlx' for d in (5, 8)):
|
||
|
new_stem = re.sub(r'(\d+)([nslmx])6(.+)?$', r'\1\2-p6\3', path.stem)
|
||
|
LOGGER.warning(f'WARNING ⚠️ Ultralytics YOLO P6 models now use -p6 suffix. Renaming {path.stem} to {new_stem}.')
|
||
|
path = path.with_name(new_stem + path.suffix)
|
||
|
|
||
|
unified_path = re.sub(r'(\d+)([nslmx])(.+)?$', r'\1\3', str(path)) # i.e. yolov8x.yaml -> yolov8.yaml
|
||
|
yaml_file = check_yaml(unified_path, hard=False) or check_yaml(path)
|
||
|
d = yaml_load(yaml_file) # model dict
|
||
|
d['scale'] = guess_model_scale(path)
|
||
|
d['yaml_file'] = str(path)
|
||
|
return d
|
||
|
|
||
|
|
||
|
def guess_model_scale(model_path):
|
||
|
"""
|
||
|
Takes a path to a YOLO model's YAML file as input and extracts the size character of the model's scale. The function
|
||
|
uses regular expression matching to find the pattern of the model scale in the YAML file name, which is denoted by
|
||
|
n, s, m, l, or x. The function returns the size character of the model scale as a string.
|
||
|
|
||
|
Args:
|
||
|
model_path (str | Path): The path to the YOLO model's YAML file.
|
||
|
|
||
|
Returns:
|
||
|
(str): The size character of the model's scale, which can be n, s, m, l, or x.
|
||
|
"""
|
||
|
with contextlib.suppress(AttributeError):
|
||
|
import re
|
||
|
return re.search(r'yolov\d+([nslmx])', Path(model_path).stem).group(1) # n, s, m, l, or x
|
||
|
return ''
|
||
|
|
||
|
|
||
|
def guess_model_task(model):
|
||
|
"""
|
||
|
Guess the task of a PyTorch model from its architecture or configuration.
|
||
|
|
||
|
Args:
|
||
|
model (nn.Module | dict): PyTorch model or model configuration in YAML format.
|
||
|
|
||
|
Returns:
|
||
|
(str): Task of the model ('detect', 'segment', 'classify', 'pose').
|
||
|
|
||
|
Raises:
|
||
|
SyntaxError: If the task of the model could not be determined.
|
||
|
"""
|
||
|
|
||
|
def cfg2task(cfg):
|
||
|
"""Guess from YAML dictionary."""
|
||
|
m = cfg['head'][-1][-2].lower() # output module name
|
||
|
if m in ('classify', 'classifier', 'cls', 'fc'):
|
||
|
return 'classify'
|
||
|
if m == 'detect':
|
||
|
return 'detect'
|
||
|
if m == 'segment':
|
||
|
return 'segment'
|
||
|
if m == 'pose':
|
||
|
return 'pose'
|
||
|
|
||
|
# Guess from model cfg
|
||
|
if isinstance(model, dict):
|
||
|
with contextlib.suppress(Exception):
|
||
|
return cfg2task(model)
|
||
|
|
||
|
# Guess from PyTorch model
|
||
|
if isinstance(model, nn.Module): # PyTorch model
|
||
|
for x in 'model.args', 'model.model.args', 'model.model.model.args':
|
||
|
with contextlib.suppress(Exception):
|
||
|
return eval(x)['task']
|
||
|
for x in 'model.yaml', 'model.model.yaml', 'model.model.model.yaml':
|
||
|
with contextlib.suppress(Exception):
|
||
|
return cfg2task(eval(x))
|
||
|
|
||
|
for m in model.modules():
|
||
|
if isinstance(m, Detect):
|
||
|
return 'detect'
|
||
|
elif isinstance(m, Segment):
|
||
|
return 'segment'
|
||
|
elif isinstance(m, Classify):
|
||
|
return 'classify'
|
||
|
elif isinstance(m, Pose):
|
||
|
return 'pose'
|
||
|
|
||
|
# Guess from model filename
|
||
|
if isinstance(model, (str, Path)):
|
||
|
model = Path(model)
|
||
|
if '-seg' in model.stem or 'segment' in model.parts:
|
||
|
return 'segment'
|
||
|
elif '-cls' in model.stem or 'classify' in model.parts:
|
||
|
return 'classify'
|
||
|
elif '-pose' in model.stem or 'pose' in model.parts:
|
||
|
return 'pose'
|
||
|
elif 'detect' in model.parts:
|
||
|
return 'detect'
|
||
|
|
||
|
# Unable to determine task from model
|
||
|
LOGGER.warning("WARNING ⚠️ Unable to automatically guess model task, assuming 'task=detect'. "
|
||
|
"Explicitly define task for your model, i.e. 'task=detect', 'segment', 'classify', or 'pose'.")
|
||
|
return 'detect' # assume detect
|