689 lines
31 KiB
Python
689 lines
31 KiB
Python
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||
|
|
||
|
import contextlib
|
||
|
import math
|
||
|
import warnings
|
||
|
from pathlib import Path
|
||
|
|
||
|
import cv2
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
from PIL import Image, ImageDraw, ImageFont
|
||
|
from PIL import __version__ as pil_version
|
||
|
|
||
|
from ultralytics.utils import LOGGER, TryExcept, ops, plt_settings, threaded
|
||
|
|
||
|
from .checks import check_font, check_version, is_ascii
|
||
|
from .files import increment_path
|
||
|
|
||
|
|
||
|
class Colors:
|
||
|
"""
|
||
|
Ultralytics default color palette https://ultralytics.com/.
|
||
|
|
||
|
This class provides methods to work with the Ultralytics color palette, including converting hex color codes to
|
||
|
RGB values.
|
||
|
|
||
|
Attributes:
|
||
|
palette (list of tuple): List of RGB color values.
|
||
|
n (int): The number of colors in the palette.
|
||
|
pose_palette (np.array): A specific color palette array with dtype np.uint8.
|
||
|
"""
|
||
|
|
||
|
def __init__(self):
|
||
|
"""Initialize colors as hex = matplotlib.colors.TABLEAU_COLORS.values()."""
|
||
|
hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
|
||
|
'2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
|
||
|
self.palette = [self.hex2rgb(f'#{c}') for c in hexs]
|
||
|
self.n = len(self.palette)
|
||
|
self.pose_palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102], [230, 230, 0], [255, 153, 255],
|
||
|
[153, 204, 255], [255, 102, 255], [255, 51, 255], [102, 178, 255], [51, 153, 255],
|
||
|
[255, 153, 153], [255, 102, 102], [255, 51, 51], [153, 255, 153], [102, 255, 102],
|
||
|
[51, 255, 51], [0, 255, 0], [0, 0, 255], [255, 0, 0], [255, 255, 255]],
|
||
|
dtype=np.uint8)
|
||
|
|
||
|
def __call__(self, i, bgr=False):
|
||
|
"""Converts hex color codes to RGB values."""
|
||
|
c = self.palette[int(i) % self.n]
|
||
|
return (c[2], c[1], c[0]) if bgr else c
|
||
|
|
||
|
@staticmethod
|
||
|
def hex2rgb(h):
|
||
|
"""Converts hex color codes to RGB values (i.e. default PIL order)."""
|
||
|
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
|
||
|
|
||
|
|
||
|
colors = Colors() # create instance for 'from utils.plots import colors'
|
||
|
|
||
|
|
||
|
class Annotator:
|
||
|
"""
|
||
|
Ultralytics Annotator for train/val mosaics and JPGs and predictions annotations.
|
||
|
|
||
|
Attributes:
|
||
|
im (Image.Image or numpy array): The image to annotate.
|
||
|
pil (bool): Whether to use PIL or cv2 for drawing annotations.
|
||
|
font (ImageFont.truetype or ImageFont.load_default): Font used for text annotations.
|
||
|
lw (float): Line width for drawing.
|
||
|
skeleton (List[List[int]]): Skeleton structure for keypoints.
|
||
|
limb_color (List[int]): Color palette for limbs.
|
||
|
kpt_color (List[int]): Color palette for keypoints.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
|
||
|
"""Initialize the Annotator class with image and line width along with color palette for keypoints and limbs."""
|
||
|
assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.'
|
||
|
non_ascii = not is_ascii(example) # non-latin labels, i.e. asian, arabic, cyrillic
|
||
|
self.pil = pil or non_ascii
|
||
|
self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2) # line width
|
||
|
if self.pil: # use PIL
|
||
|
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
|
||
|
self.draw = ImageDraw.Draw(self.im)
|
||
|
try:
|
||
|
font = check_font('Arial.Unicode.ttf' if non_ascii else font)
|
||
|
size = font_size or max(round(sum(self.im.size) / 2 * 0.035), 12)
|
||
|
self.font = ImageFont.truetype(str(font), size)
|
||
|
except Exception:
|
||
|
self.font = ImageFont.load_default()
|
||
|
# Deprecation fix for w, h = getsize(string) -> _, _, w, h = getbox(string)
|
||
|
if check_version(pil_version, '9.2.0'):
|
||
|
self.font.getsize = lambda x: self.font.getbbox(x)[2:4] # text width, height
|
||
|
else: # use cv2
|
||
|
self.im = im
|
||
|
self.tf = max(self.lw - 1, 1) # font thickness
|
||
|
self.sf = self.lw / 3 # font scale
|
||
|
# Pose
|
||
|
self.skeleton = [[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12], [7, 13], [6, 7], [6, 8], [7, 9],
|
||
|
[8, 10], [9, 11], [2, 3], [1, 2], [1, 3], [2, 4], [3, 5], [4, 6], [5, 7]]
|
||
|
|
||
|
self.limb_color = colors.pose_palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]]
|
||
|
self.kpt_color = colors.pose_palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]]
|
||
|
|
||
|
def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
|
||
|
"""Add one xyxy box to image with label."""
|
||
|
if isinstance(box, torch.Tensor):
|
||
|
box = box.tolist()
|
||
|
if self.pil or not is_ascii(label):
|
||
|
self.draw.rectangle(box, width=self.lw, outline=color) # box
|
||
|
if label:
|
||
|
w, h = self.font.getsize(label) # text width, height
|
||
|
outside = box[1] - h >= 0 # label fits outside box
|
||
|
self.draw.rectangle(
|
||
|
(box[0], box[1] - h if outside else box[1], box[0] + w + 1,
|
||
|
box[1] + 1 if outside else box[1] + h + 1),
|
||
|
fill=color,
|
||
|
)
|
||
|
# self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls') # for PIL>8.0
|
||
|
self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font)
|
||
|
else: # cv2
|
||
|
p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
|
||
|
cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
|
||
|
if label:
|
||
|
w, h = cv2.getTextSize(label, 0, fontScale=self.sf, thickness=self.tf)[0] # text width, height
|
||
|
outside = p1[1] - h >= 3
|
||
|
p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
|
||
|
cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled
|
||
|
cv2.putText(self.im,
|
||
|
label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
|
||
|
0,
|
||
|
self.sf,
|
||
|
txt_color,
|
||
|
thickness=self.tf,
|
||
|
lineType=cv2.LINE_AA)
|
||
|
|
||
|
def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False):
|
||
|
"""
|
||
|
Plot masks on image.
|
||
|
|
||
|
Args:
|
||
|
masks (tensor): Predicted masks on cuda, shape: [n, h, w]
|
||
|
colors (List[List[Int]]): Colors for predicted masks, [[r, g, b] * n]
|
||
|
im_gpu (tensor): Image is in cuda, shape: [3, h, w], range: [0, 1]
|
||
|
alpha (float): Mask transparency: 0.0 fully transparent, 1.0 opaque
|
||
|
retina_masks (bool): Whether to use high resolution masks or not. Defaults to False.
|
||
|
"""
|
||
|
if self.pil:
|
||
|
# Convert to numpy first
|
||
|
self.im = np.asarray(self.im).copy()
|
||
|
if len(masks) == 0:
|
||
|
self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
|
||
|
if im_gpu.device != masks.device:
|
||
|
im_gpu = im_gpu.to(masks.device)
|
||
|
colors = torch.tensor(colors, device=masks.device, dtype=torch.float32) / 255.0 # shape(n,3)
|
||
|
colors = colors[:, None, None] # shape(n,1,1,3)
|
||
|
masks = masks.unsqueeze(3) # shape(n,h,w,1)
|
||
|
masks_color = masks * (colors * alpha) # shape(n,h,w,3)
|
||
|
|
||
|
inv_alpha_masks = (1 - masks * alpha).cumprod(0) # shape(n,h,w,1)
|
||
|
mcs = masks_color.max(dim=0).values # shape(n,h,w,3)
|
||
|
|
||
|
im_gpu = im_gpu.flip(dims=[0]) # flip channel
|
||
|
im_gpu = im_gpu.permute(1, 2, 0).contiguous() # shape(h,w,3)
|
||
|
im_gpu = im_gpu * inv_alpha_masks[-1] + mcs
|
||
|
im_mask = (im_gpu * 255)
|
||
|
im_mask_np = im_mask.byte().cpu().numpy()
|
||
|
self.im[:] = im_mask_np if retina_masks else ops.scale_image(im_mask_np, self.im.shape)
|
||
|
if self.pil:
|
||
|
# Convert im back to PIL and update draw
|
||
|
self.fromarray(self.im)
|
||
|
|
||
|
def kpts(self, kpts, shape=(640, 640), radius=5, kpt_line=True):
|
||
|
"""
|
||
|
Plot keypoints on the image.
|
||
|
|
||
|
Args:
|
||
|
kpts (tensor): Predicted keypoints with shape [17, 3]. Each keypoint has (x, y, confidence).
|
||
|
shape (tuple): Image shape as a tuple (h, w), where h is the height and w is the width.
|
||
|
radius (int, optional): Radius of the drawn keypoints. Default is 5.
|
||
|
kpt_line (bool, optional): If True, the function will draw lines connecting keypoints
|
||
|
for human pose. Default is True.
|
||
|
|
||
|
Note: `kpt_line=True` currently only supports human pose plotting.
|
||
|
"""
|
||
|
if self.pil:
|
||
|
# Convert to numpy first
|
||
|
self.im = np.asarray(self.im).copy()
|
||
|
nkpt, ndim = kpts.shape
|
||
|
is_pose = nkpt == 17 and ndim == 3
|
||
|
kpt_line &= is_pose # `kpt_line=True` for now only supports human pose plotting
|
||
|
for i, k in enumerate(kpts):
|
||
|
color_k = [int(x) for x in self.kpt_color[i]] if is_pose else colors(i)
|
||
|
x_coord, y_coord = k[0], k[1]
|
||
|
if x_coord % shape[1] != 0 and y_coord % shape[0] != 0:
|
||
|
if len(k) == 3:
|
||
|
conf = k[2]
|
||
|
if conf < 0.5:
|
||
|
continue
|
||
|
cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, color_k, -1, lineType=cv2.LINE_AA)
|
||
|
|
||
|
if kpt_line:
|
||
|
ndim = kpts.shape[-1]
|
||
|
for i, sk in enumerate(self.skeleton):
|
||
|
pos1 = (int(kpts[(sk[0] - 1), 0]), int(kpts[(sk[0] - 1), 1]))
|
||
|
pos2 = (int(kpts[(sk[1] - 1), 0]), int(kpts[(sk[1] - 1), 1]))
|
||
|
if ndim == 3:
|
||
|
conf1 = kpts[(sk[0] - 1), 2]
|
||
|
conf2 = kpts[(sk[1] - 1), 2]
|
||
|
if conf1 < 0.5 or conf2 < 0.5:
|
||
|
continue
|
||
|
if pos1[0] % shape[1] == 0 or pos1[1] % shape[0] == 0 or pos1[0] < 0 or pos1[1] < 0:
|
||
|
continue
|
||
|
if pos2[0] % shape[1] == 0 or pos2[1] % shape[0] == 0 or pos2[0] < 0 or pos2[1] < 0:
|
||
|
continue
|
||
|
cv2.line(self.im, pos1, pos2, [int(x) for x in self.limb_color[i]], thickness=2, lineType=cv2.LINE_AA)
|
||
|
if self.pil:
|
||
|
# Convert im back to PIL and update draw
|
||
|
self.fromarray(self.im)
|
||
|
|
||
|
def rectangle(self, xy, fill=None, outline=None, width=1):
|
||
|
"""Add rectangle to image (PIL-only)."""
|
||
|
self.draw.rectangle(xy, fill, outline, width)
|
||
|
|
||
|
def text(self, xy, text, txt_color=(255, 255, 255), anchor='top', box_style=False):
|
||
|
"""Adds text to an image using PIL or cv2."""
|
||
|
if anchor == 'bottom': # start y from font bottom
|
||
|
w, h = self.font.getsize(text) # text width, height
|
||
|
xy[1] += 1 - h
|
||
|
if self.pil:
|
||
|
if box_style:
|
||
|
w, h = self.font.getsize(text)
|
||
|
self.draw.rectangle((xy[0], xy[1], xy[0] + w + 1, xy[1] + h + 1), fill=txt_color)
|
||
|
# Using `txt_color` for background and draw fg with white color
|
||
|
txt_color = (255, 255, 255)
|
||
|
if '\n' in text:
|
||
|
lines = text.split('\n')
|
||
|
_, h = self.font.getsize(text)
|
||
|
for line in lines:
|
||
|
self.draw.text(xy, line, fill=txt_color, font=self.font)
|
||
|
xy[1] += h
|
||
|
else:
|
||
|
self.draw.text(xy, text, fill=txt_color, font=self.font)
|
||
|
else:
|
||
|
if box_style:
|
||
|
w, h = cv2.getTextSize(text, 0, fontScale=self.sf, thickness=self.tf)[0] # text width, height
|
||
|
outside = xy[1] - h >= 3
|
||
|
p2 = xy[0] + w, xy[1] - h - 3 if outside else xy[1] + h + 3
|
||
|
cv2.rectangle(self.im, xy, p2, txt_color, -1, cv2.LINE_AA) # filled
|
||
|
# Using `txt_color` for background and draw fg with white color
|
||
|
txt_color = (255, 255, 255)
|
||
|
cv2.putText(self.im, text, xy, 0, self.sf, txt_color, thickness=self.tf, lineType=cv2.LINE_AA)
|
||
|
|
||
|
def fromarray(self, im):
|
||
|
"""Update self.im from a numpy array."""
|
||
|
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
|
||
|
self.draw = ImageDraw.Draw(self.im)
|
||
|
|
||
|
def result(self):
|
||
|
"""Return annotated image as array."""
|
||
|
return np.asarray(self.im)
|
||
|
|
||
|
|
||
|
@TryExcept() # known issue https://github.com/ultralytics/yolov5/issues/5395
|
||
|
@plt_settings()
|
||
|
def plot_labels(boxes, cls, names=(), save_dir=Path(''), on_plot=None):
|
||
|
"""Plot training labels including class histograms and box statistics."""
|
||
|
import pandas as pd
|
||
|
import seaborn as sn
|
||
|
|
||
|
# Filter matplotlib>=3.7.2 warning and Seaborn use_inf and is_categorical FutureWarnings
|
||
|
warnings.filterwarnings('ignore', category=UserWarning, message='The figure layout has changed to tight')
|
||
|
warnings.filterwarnings('ignore', category=FutureWarning)
|
||
|
|
||
|
# Plot dataset labels
|
||
|
LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
|
||
|
nc = int(cls.max() + 1) # number of classes
|
||
|
boxes = boxes[:1000000] # limit to 1M boxes
|
||
|
x = pd.DataFrame(boxes, columns=['x', 'y', 'width', 'height'])
|
||
|
|
||
|
# Seaborn correlogram
|
||
|
sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
|
||
|
plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
|
||
|
plt.close()
|
||
|
|
||
|
# Matplotlib labels
|
||
|
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
|
||
|
y = ax[0].hist(cls, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
|
||
|
for i in range(nc):
|
||
|
y[2].patches[i].set_color([x / 255 for x in colors(i)])
|
||
|
ax[0].set_ylabel('instances')
|
||
|
if 0 < len(names) < 30:
|
||
|
ax[0].set_xticks(range(len(names)))
|
||
|
ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10)
|
||
|
else:
|
||
|
ax[0].set_xlabel('classes')
|
||
|
sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
|
||
|
sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
|
||
|
|
||
|
# Rectangles
|
||
|
boxes[:, 0:2] = 0.5 # center
|
||
|
boxes = ops.xywh2xyxy(boxes) * 1000
|
||
|
img = Image.fromarray(np.ones((1000, 1000, 3), dtype=np.uint8) * 255)
|
||
|
for cls, box in zip(cls[:500], boxes[:500]):
|
||
|
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot
|
||
|
ax[1].imshow(img)
|
||
|
ax[1].axis('off')
|
||
|
|
||
|
for a in [0, 1, 2, 3]:
|
||
|
for s in ['top', 'right', 'left', 'bottom']:
|
||
|
ax[a].spines[s].set_visible(False)
|
||
|
|
||
|
fname = save_dir / 'labels.jpg'
|
||
|
plt.savefig(fname, dpi=200)
|
||
|
plt.close()
|
||
|
if on_plot:
|
||
|
on_plot(fname)
|
||
|
|
||
|
|
||
|
def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True):
|
||
|
"""
|
||
|
Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop.
|
||
|
|
||
|
This function takes a bounding box and an image, and then saves a cropped portion of the image according
|
||
|
to the bounding box. Optionally, the crop can be squared, and the function allows for gain and padding
|
||
|
adjustments to the bounding box.
|
||
|
|
||
|
Args:
|
||
|
xyxy (torch.Tensor or list): A tensor or list representing the bounding box in xyxy format.
|
||
|
im (numpy.ndarray): The input image.
|
||
|
file (Path, optional): The path where the cropped image will be saved. Defaults to 'im.jpg'.
|
||
|
gain (float, optional): A multiplicative factor to increase the size of the bounding box. Defaults to 1.02.
|
||
|
pad (int, optional): The number of pixels to add to the width and height of the bounding box. Defaults to 10.
|
||
|
square (bool, optional): If True, the bounding box will be transformed into a square. Defaults to False.
|
||
|
BGR (bool, optional): If True, the image will be saved in BGR format, otherwise in RGB. Defaults to False.
|
||
|
save (bool, optional): If True, the cropped image will be saved to disk. Defaults to True.
|
||
|
|
||
|
Returns:
|
||
|
(numpy.ndarray): The cropped image.
|
||
|
|
||
|
Example:
|
||
|
```python
|
||
|
from ultralytics.utils.plotting import save_one_box
|
||
|
|
||
|
xyxy = [50, 50, 150, 150]
|
||
|
im = cv2.imread('image.jpg')
|
||
|
cropped_im = save_one_box(xyxy, im, file='cropped.jpg', square=True)
|
||
|
```
|
||
|
"""
|
||
|
|
||
|
if not isinstance(xyxy, torch.Tensor): # may be list
|
||
|
xyxy = torch.stack(xyxy)
|
||
|
b = ops.xyxy2xywh(xyxy.view(-1, 4)) # boxes
|
||
|
if square:
|
||
|
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
|
||
|
b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
|
||
|
xyxy = ops.xywh2xyxy(b).long()
|
||
|
xyxy = ops.clip_boxes(xyxy, im.shape)
|
||
|
crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)]
|
||
|
if save:
|
||
|
file.parent.mkdir(parents=True, exist_ok=True) # make directory
|
||
|
f = str(increment_path(file).with_suffix('.jpg'))
|
||
|
# cv2.imwrite(f, crop) # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
|
||
|
Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0) # save RGB
|
||
|
return crop
|
||
|
|
||
|
|
||
|
@threaded
|
||
|
def plot_images(images,
|
||
|
batch_idx,
|
||
|
cls,
|
||
|
bboxes=np.zeros(0, dtype=np.float32),
|
||
|
masks=np.zeros(0, dtype=np.uint8),
|
||
|
kpts=np.zeros((0, 51), dtype=np.float32),
|
||
|
paths=None,
|
||
|
fname='images.jpg',
|
||
|
names=None,
|
||
|
on_plot=None):
|
||
|
"""Plot image grid with labels."""
|
||
|
if isinstance(images, torch.Tensor):
|
||
|
images = images.cpu().float().numpy()
|
||
|
if isinstance(cls, torch.Tensor):
|
||
|
cls = cls.cpu().numpy()
|
||
|
if isinstance(bboxes, torch.Tensor):
|
||
|
bboxes = bboxes.cpu().numpy()
|
||
|
if isinstance(masks, torch.Tensor):
|
||
|
masks = masks.cpu().numpy().astype(int)
|
||
|
if isinstance(kpts, torch.Tensor):
|
||
|
kpts = kpts.cpu().numpy()
|
||
|
if isinstance(batch_idx, torch.Tensor):
|
||
|
batch_idx = batch_idx.cpu().numpy()
|
||
|
|
||
|
max_size = 1920 # max image size
|
||
|
max_subplots = 16 # max image subplots, i.e. 4x4
|
||
|
bs, _, h, w = images.shape # batch size, _, height, width
|
||
|
bs = min(bs, max_subplots) # limit plot images
|
||
|
ns = np.ceil(bs ** 0.5) # number of subplots (square)
|
||
|
if np.max(images[0]) <= 1:
|
||
|
images *= 255 # de-normalise (optional)
|
||
|
|
||
|
# Build Image
|
||
|
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
|
||
|
for i, im in enumerate(images):
|
||
|
if i == max_subplots: # if last batch has fewer images than we expect
|
||
|
break
|
||
|
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
|
||
|
im = im.transpose(1, 2, 0)
|
||
|
mosaic[y:y + h, x:x + w, :] = im
|
||
|
|
||
|
# Resize (optional)
|
||
|
scale = max_size / ns / max(h, w)
|
||
|
if scale < 1:
|
||
|
h = math.ceil(scale * h)
|
||
|
w = math.ceil(scale * w)
|
||
|
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
|
||
|
|
||
|
# Annotate
|
||
|
fs = int((h + w) * ns * 0.01) # font size
|
||
|
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
|
||
|
for i in range(i + 1):
|
||
|
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
|
||
|
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
|
||
|
if paths:
|
||
|
annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
|
||
|
if len(cls) > 0:
|
||
|
idx = batch_idx == i
|
||
|
classes = cls[idx].astype('int')
|
||
|
|
||
|
if len(bboxes):
|
||
|
boxes = ops.xywh2xyxy(bboxes[idx, :4]).T
|
||
|
labels = bboxes.shape[1] == 4 # labels if no conf column
|
||
|
conf = None if labels else bboxes[idx, 4] # check for confidence presence (label vs pred)
|
||
|
|
||
|
if boxes.shape[1]:
|
||
|
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
|
||
|
boxes[[0, 2]] *= w # scale to pixels
|
||
|
boxes[[1, 3]] *= h
|
||
|
elif scale < 1: # absolute coords need scale if image scales
|
||
|
boxes *= scale
|
||
|
boxes[[0, 2]] += x
|
||
|
boxes[[1, 3]] += y
|
||
|
for j, box in enumerate(boxes.T.tolist()):
|
||
|
c = classes[j]
|
||
|
color = colors(c)
|
||
|
c = names.get(c, c) if names else c
|
||
|
if labels or conf[j] > 0.25: # 0.25 conf thresh
|
||
|
label = f'{c}' if labels else f'{c} {conf[j]:.1f}'
|
||
|
annotator.box_label(box, label, color=color)
|
||
|
elif len(classes):
|
||
|
for c in classes:
|
||
|
color = colors(c)
|
||
|
c = names.get(c, c) if names else c
|
||
|
annotator.text((x, y), f'{c}', txt_color=color, box_style=True)
|
||
|
|
||
|
# Plot keypoints
|
||
|
if len(kpts):
|
||
|
kpts_ = kpts[idx].copy()
|
||
|
if len(kpts_):
|
||
|
if kpts_[..., 0].max() <= 1.01 or kpts_[..., 1].max() <= 1.01: # if normalized with tolerance .01
|
||
|
kpts_[..., 0] *= w # scale to pixels
|
||
|
kpts_[..., 1] *= h
|
||
|
elif scale < 1: # absolute coords need scale if image scales
|
||
|
kpts_ *= scale
|
||
|
kpts_[..., 0] += x
|
||
|
kpts_[..., 1] += y
|
||
|
for j in range(len(kpts_)):
|
||
|
if labels or conf[j] > 0.25: # 0.25 conf thresh
|
||
|
annotator.kpts(kpts_[j])
|
||
|
|
||
|
# Plot masks
|
||
|
if len(masks):
|
||
|
if idx.shape[0] == masks.shape[0]: # overlap_masks=False
|
||
|
image_masks = masks[idx]
|
||
|
else: # overlap_masks=True
|
||
|
image_masks = masks[[i]] # (1, 640, 640)
|
||
|
nl = idx.sum()
|
||
|
index = np.arange(nl).reshape((nl, 1, 1)) + 1
|
||
|
image_masks = np.repeat(image_masks, nl, axis=0)
|
||
|
image_masks = np.where(image_masks == index, 1.0, 0.0)
|
||
|
|
||
|
im = np.asarray(annotator.im).copy()
|
||
|
for j, box in enumerate(boxes.T.tolist()):
|
||
|
if labels or conf[j] > 0.25: # 0.25 conf thresh
|
||
|
color = colors(classes[j])
|
||
|
mh, mw = image_masks[j].shape
|
||
|
if mh != h or mw != w:
|
||
|
mask = image_masks[j].astype(np.uint8)
|
||
|
mask = cv2.resize(mask, (w, h))
|
||
|
mask = mask.astype(bool)
|
||
|
else:
|
||
|
mask = image_masks[j].astype(bool)
|
||
|
with contextlib.suppress(Exception):
|
||
|
im[y:y + h, x:x + w, :][mask] = im[y:y + h, x:x + w, :][mask] * 0.4 + np.array(color) * 0.6
|
||
|
annotator.fromarray(im)
|
||
|
annotator.im.save(fname) # save
|
||
|
if on_plot:
|
||
|
on_plot(fname)
|
||
|
|
||
|
|
||
|
@plt_settings()
|
||
|
def plot_results(file='path/to/results.csv', dir='', segment=False, pose=False, classify=False, on_plot=None):
|
||
|
"""
|
||
|
Plot training results from a results CSV file. The function supports various types of data including segmentation,
|
||
|
pose estimation, and classification. Plots are saved as 'results.png' in the directory where the CSV is located.
|
||
|
|
||
|
Args:
|
||
|
file (str, optional): Path to the CSV file containing the training results. Defaults to 'path/to/results.csv'.
|
||
|
dir (str, optional): Directory where the CSV file is located if 'file' is not provided. Defaults to ''.
|
||
|
segment (bool, optional): Flag to indicate if the data is for segmentation. Defaults to False.
|
||
|
pose (bool, optional): Flag to indicate if the data is for pose estimation. Defaults to False.
|
||
|
classify (bool, optional): Flag to indicate if the data is for classification. Defaults to False.
|
||
|
on_plot (callable, optional): Callback function to be executed after plotting. Takes filename as an argument.
|
||
|
Defaults to None.
|
||
|
|
||
|
Example:
|
||
|
```python
|
||
|
from ultralytics.utils.plotting import plot_results
|
||
|
|
||
|
plot_results('path/to/results.csv', segment=True)
|
||
|
```
|
||
|
"""
|
||
|
import pandas as pd
|
||
|
from scipy.ndimage import gaussian_filter1d
|
||
|
save_dir = Path(file).parent if file else Path(dir)
|
||
|
if classify:
|
||
|
fig, ax = plt.subplots(2, 2, figsize=(6, 6), tight_layout=True)
|
||
|
index = [1, 4, 2, 3]
|
||
|
elif segment:
|
||
|
fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
|
||
|
index = [1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]
|
||
|
elif pose:
|
||
|
fig, ax = plt.subplots(2, 9, figsize=(21, 6), tight_layout=True)
|
||
|
index = [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 16, 17, 18, 8, 9, 12, 13]
|
||
|
else:
|
||
|
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
|
||
|
index = [1, 2, 3, 4, 5, 8, 9, 10, 6, 7]
|
||
|
ax = ax.ravel()
|
||
|
files = list(save_dir.glob('results*.csv'))
|
||
|
assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
|
||
|
for f in files:
|
||
|
try:
|
||
|
data = pd.read_csv(f)
|
||
|
s = [x.strip() for x in data.columns]
|
||
|
x = data.values[:, 0]
|
||
|
for i, j in enumerate(index):
|
||
|
y = data.values[:, j].astype('float')
|
||
|
# y[y == 0] = np.nan # don't show zero values
|
||
|
ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8) # actual results
|
||
|
ax[i].plot(x, gaussian_filter1d(y, sigma=3), ':', label='smooth', linewidth=2) # smoothing line
|
||
|
ax[i].set_title(s[j], fontsize=12)
|
||
|
# if j in [8, 9, 10]: # share train and val loss y axes
|
||
|
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
|
||
|
except Exception as e:
|
||
|
LOGGER.warning(f'WARNING: Plotting error for {f}: {e}')
|
||
|
ax[1].legend()
|
||
|
fname = save_dir / 'results.png'
|
||
|
fig.savefig(fname, dpi=200)
|
||
|
plt.close()
|
||
|
if on_plot:
|
||
|
on_plot(fname)
|
||
|
|
||
|
|
||
|
def plt_color_scatter(v, f, bins=20, cmap='viridis', alpha=0.8, edgecolors='none'):
|
||
|
"""
|
||
|
Plots a scatter plot with points colored based on a 2D histogram.
|
||
|
|
||
|
Args:
|
||
|
v (array-like): Values for the x-axis.
|
||
|
f (array-like): Values for the y-axis.
|
||
|
bins (int, optional): Number of bins for the histogram. Defaults to 20.
|
||
|
cmap (str, optional): Colormap for the scatter plot. Defaults to 'viridis'.
|
||
|
alpha (float, optional): Alpha for the scatter plot. Defaults to 0.8.
|
||
|
edgecolors (str, optional): Edge colors for the scatter plot. Defaults to 'none'.
|
||
|
|
||
|
Examples:
|
||
|
>>> v = np.random.rand(100)
|
||
|
>>> f = np.random.rand(100)
|
||
|
>>> plt_color_scatter(v, f)
|
||
|
"""
|
||
|
|
||
|
# Calculate 2D histogram and corresponding colors
|
||
|
hist, xedges, yedges = np.histogram2d(v, f, bins=bins)
|
||
|
colors = [
|
||
|
hist[min(np.digitize(v[i], xedges, right=True) - 1, hist.shape[0] - 1),
|
||
|
min(np.digitize(f[i], yedges, right=True) - 1, hist.shape[1] - 1)] for i in range(len(v))]
|
||
|
|
||
|
# Scatter plot
|
||
|
plt.scatter(v, f, c=colors, cmap=cmap, alpha=alpha, edgecolors=edgecolors)
|
||
|
|
||
|
|
||
|
def plot_tune_results(csv_file='tune_results.csv'):
|
||
|
"""
|
||
|
Plot the evolution results stored in an 'tune_results.csv' file. The function generates a scatter plot for each key
|
||
|
in the CSV, color-coded based on fitness scores. The best-performing configurations are highlighted on the plots.
|
||
|
|
||
|
Args:
|
||
|
csv_file (str, optional): Path to the CSV file containing the tuning results. Defaults to 'tune_results.csv'.
|
||
|
|
||
|
Examples:
|
||
|
>>> plot_tune_results('path/to/tune_results.csv')
|
||
|
"""
|
||
|
|
||
|
import pandas as pd
|
||
|
from scipy.ndimage import gaussian_filter1d
|
||
|
|
||
|
# Scatter plots for each hyperparameter
|
||
|
csv_file = Path(csv_file)
|
||
|
data = pd.read_csv(csv_file)
|
||
|
num_metrics_columns = 1
|
||
|
keys = [x.strip() for x in data.columns][num_metrics_columns:]
|
||
|
x = data.values
|
||
|
fitness = x[:, 0] # fitness
|
||
|
j = np.argmax(fitness) # max fitness index
|
||
|
n = math.ceil(len(keys) ** 0.5) # columns and rows in plot
|
||
|
plt.figure(figsize=(10, 10), tight_layout=True)
|
||
|
for i, k in enumerate(keys):
|
||
|
v = x[:, i + num_metrics_columns]
|
||
|
mu = v[j] # best single result
|
||
|
plt.subplot(n, n, i + 1)
|
||
|
plt_color_scatter(v, fitness, cmap='viridis', alpha=.8, edgecolors='none')
|
||
|
plt.plot(mu, fitness.max(), 'k+', markersize=15)
|
||
|
plt.title(f'{k} = {mu:.3g}', fontdict={'size': 9}) # limit to 40 characters
|
||
|
plt.tick_params(axis='both', labelsize=8) # Set axis label size to 8
|
||
|
if i % n != 0:
|
||
|
plt.yticks([])
|
||
|
|
||
|
file = csv_file.with_name('tune_scatter_plots.png') # filename
|
||
|
plt.savefig(file, dpi=200)
|
||
|
plt.close()
|
||
|
LOGGER.info(f'Saved {file}')
|
||
|
|
||
|
# Fitness vs iteration
|
||
|
x = range(1, len(fitness) + 1)
|
||
|
plt.figure(figsize=(10, 6), tight_layout=True)
|
||
|
plt.plot(x, fitness, marker='o', linestyle='none', label='fitness')
|
||
|
plt.plot(x, gaussian_filter1d(fitness, sigma=3), ':', label='smoothed', linewidth=2) # smoothing line
|
||
|
plt.title('Fitness vs Iteration')
|
||
|
plt.xlabel('Iteration')
|
||
|
plt.ylabel('Fitness')
|
||
|
plt.grid(True)
|
||
|
plt.legend()
|
||
|
|
||
|
file = csv_file.with_name('tune_fitness.png') # filename
|
||
|
plt.savefig(file, dpi=200)
|
||
|
plt.close()
|
||
|
LOGGER.info(f'Saved {file}')
|
||
|
|
||
|
|
||
|
def output_to_target(output, max_det=300):
|
||
|
"""Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting."""
|
||
|
targets = []
|
||
|
for i, o in enumerate(output):
|
||
|
box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1)
|
||
|
j = torch.full((conf.shape[0], 1), i)
|
||
|
targets.append(torch.cat((j, cls, ops.xyxy2xywh(box), conf), 1))
|
||
|
targets = torch.cat(targets, 0).numpy()
|
||
|
return targets[:, 0], targets[:, 1], targets[:, 2:]
|
||
|
|
||
|
|
||
|
def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')):
|
||
|
"""
|
||
|
Visualize feature maps of a given model module during inference.
|
||
|
|
||
|
Args:
|
||
|
x (torch.Tensor): Features to be visualized.
|
||
|
module_type (str): Module type.
|
||
|
stage (int): Module stage within the model.
|
||
|
n (int, optional): Maximum number of feature maps to plot. Defaults to 32.
|
||
|
save_dir (Path, optional): Directory to save results. Defaults to Path('runs/detect/exp').
|
||
|
"""
|
||
|
for m in ['Detect', 'Pose', 'Segment']:
|
||
|
if m in module_type:
|
||
|
return
|
||
|
batch, channels, height, width = x.shape # batch, channels, height, width
|
||
|
if height > 1 and width > 1:
|
||
|
f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename
|
||
|
|
||
|
blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels
|
||
|
n = min(n, channels) # number of plots
|
||
|
fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols
|
||
|
ax = ax.ravel()
|
||
|
plt.subplots_adjust(wspace=0.05, hspace=0.05)
|
||
|
for i in range(n):
|
||
|
ax[i].imshow(blocks[i].squeeze()) # cmap='gray'
|
||
|
ax[i].axis('off')
|
||
|
|
||
|
LOGGER.info(f'Saving {f}... ({n}/{channels})')
|
||
|
plt.savefig(f, dpi=300, bbox_inches='tight')
|
||
|
plt.close()
|
||
|
np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy()) # npy save
|