# Ultralytics YOLO 🚀, AGPL-3.0 license import subprocess from ultralytics.cfg import TASK2DATA, TASK2METRIC, get_save_dir from ultralytics.utils import DEFAULT_CFG, DEFAULT_CFG_DICT, LOGGER, NUM_THREADS def run_ray_tune(model, space: dict = None, grace_period: int = 10, gpu_per_trial: int = None, max_samples: int = 10, **train_args): """ Runs hyperparameter tuning using Ray Tune. Args: model (YOLO): Model to run the tuner on. space (dict, optional): The hyperparameter search space. Defaults to None. grace_period (int, optional): The grace period in epochs of the ASHA scheduler. Defaults to 10. gpu_per_trial (int, optional): The number of GPUs to allocate per trial. Defaults to None. max_samples (int, optional): The maximum number of trials to run. Defaults to 10. train_args (dict, optional): Additional arguments to pass to the `train()` method. Defaults to {}. Returns: (dict): A dictionary containing the results of the hyperparameter search. Example: ```python from ultralytics import YOLO # Load a YOLOv8n model model = YOLO('yolov8n.pt') # Start tuning hyperparameters for YOLOv8n training on the COCO8 dataset result_grid = model.tune(data='coco8.yaml', use_ray=True) ``` """ LOGGER.info('💡 Learn about RayTune at https://docs.ultralytics.com/integrations/ray-tune') if train_args is None: train_args = {} try: subprocess.run('pip install ray[tune]'.split(), check=True) import ray from ray import tune from ray.air import RunConfig from ray.air.integrations.wandb import WandbLoggerCallback from ray.tune.schedulers import ASHAScheduler except ImportError: raise ModuleNotFoundError('Tuning hyperparameters requires Ray Tune. Install with: pip install "ray[tune]"') try: import wandb assert hasattr(wandb, '__version__') except (ImportError, AssertionError): wandb = False default_space = { # 'optimizer': tune.choice(['SGD', 'Adam', 'AdamW', 'NAdam', 'RAdam', 'RMSProp']), 'lr0': tune.uniform(1e-5, 1e-1), 'lrf': tune.uniform(0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf) 'momentum': tune.uniform(0.6, 0.98), # SGD momentum/Adam beta1 'weight_decay': tune.uniform(0.0, 0.001), # optimizer weight decay 5e-4 'warmup_epochs': tune.uniform(0.0, 5.0), # warmup epochs (fractions ok) 'warmup_momentum': tune.uniform(0.0, 0.95), # warmup initial momentum 'box': tune.uniform(0.02, 0.2), # box loss gain 'cls': tune.uniform(0.2, 4.0), # cls loss gain (scale with pixels) 'hsv_h': tune.uniform(0.0, 0.1), # image HSV-Hue augmentation (fraction) 'hsv_s': tune.uniform(0.0, 0.9), # image HSV-Saturation augmentation (fraction) 'hsv_v': tune.uniform(0.0, 0.9), # image HSV-Value augmentation (fraction) 'degrees': tune.uniform(0.0, 45.0), # image rotation (+/- deg) 'translate': tune.uniform(0.0, 0.9), # image translation (+/- fraction) 'scale': tune.uniform(0.0, 0.9), # image scale (+/- gain) 'shear': tune.uniform(0.0, 10.0), # image shear (+/- deg) 'perspective': tune.uniform(0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 'flipud': tune.uniform(0.0, 1.0), # image flip up-down (probability) 'fliplr': tune.uniform(0.0, 1.0), # image flip left-right (probability) 'mosaic': tune.uniform(0.0, 1.0), # image mixup (probability) 'mixup': tune.uniform(0.0, 1.0), # image mixup (probability) 'copy_paste': tune.uniform(0.0, 1.0)} # segment copy-paste (probability) # Put the model in ray store task = model.task model_in_store = ray.put(model) def _tune(config): """ Trains the YOLO model with the specified hyperparameters and additional arguments. Args: config (dict): A dictionary of hyperparameters to use for training. Returns: None. """ model_to_train = ray.get(model_in_store) # get the model from ray store for tuning model_to_train.reset_callbacks() config.update(train_args) results = model_to_train.train(**config) return results.results_dict # Get search space if not space: space = default_space LOGGER.warning('WARNING ⚠️ search space not provided, using default search space.') # Get dataset data = train_args.get('data', TASK2DATA[task]) space['data'] = data if 'data' not in train_args: LOGGER.warning(f'WARNING ⚠️ data not provided, using default "data={data}".') # Define the trainable function with allocated resources trainable_with_resources = tune.with_resources(_tune, {'cpu': NUM_THREADS, 'gpu': gpu_per_trial or 0}) # Define the ASHA scheduler for hyperparameter search asha_scheduler = ASHAScheduler(time_attr='epoch', metric=TASK2METRIC[task], mode='max', max_t=train_args.get('epochs') or DEFAULT_CFG_DICT['epochs'] or 100, grace_period=grace_period, reduction_factor=3) # Define the callbacks for the hyperparameter search tuner_callbacks = [WandbLoggerCallback(project='YOLOv8-tune')] if wandb else [] # Create the Ray Tune hyperparameter search tuner tune_dir = get_save_dir(DEFAULT_CFG, name='tune').resolve() # must be absolute dir tune_dir.mkdir(parents=True, exist_ok=True) tuner = tune.Tuner(trainable_with_resources, param_space=space, tune_config=tune.TuneConfig(scheduler=asha_scheduler, num_samples=max_samples), run_config=RunConfig(callbacks=tuner_callbacks, storage_path=tune_dir)) # Run the hyperparameter search tuner.fit() # Return the results of the hyperparameter search return tuner.get_results()