#解决重叠框问题,并调试人头框,可显示多人头,但是人头框闪烁 import os import cv2 import numpy as np from collections import deque from ultralytics import YOLO # YOLOv8模型路径 model_path = r'detect\train\weights\best.pt' model = YOLO(model_path) # 动态检测参数 tracking_window_size = 250 # 10秒对应的帧数 center_history = deque(maxlen=tracking_window_size) tracker = None # 跟踪器变量 tracking_initialized = False # 定义头部中心点的容忍范围(像素) tolerance_radius = 20 # 你可以根据实际需要调整 detection_interval = 10 # 目标检测的帧间隔 def infer_and_draw_video(video_path, output_folder): # 打开RTSP视频流 cap = cv2.VideoCapture(video_path) if not cap.isOpened(): print("错误:无法打开视频流。") return # 获取视频属性 fps = int(cap.get(cv2.CAP_PROP_FPS)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # 创建视频写入对象 output_video_path = os.path.join(output_folder, 'output_video.mp4') fourcc = cv2.VideoWriter_fourcc(*'mp4v') # 使用mp4v编解码器 out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height)) global tracking_initialized global center_history global tracker frame_counter = 0 # 帧计数器 while True: ret, frame = cap.read() if not ret: print("视频流读取结束或出错。") break frame_counter += 1 filtered_boxes = [] # 确保在进入目标检测逻辑之前初始化 if frame_counter % detection_interval == 0: # 每一定帧数进行目标检测 # 使用YOLOv8进行目标检测 results = model(frame) detected_boxes = [] if results: for result in results: if result.boxes is not None and len(result.boxes.xyxy) > 0: boxes = result.boxes.xyxy.cpu().numpy() confidences = result.boxes.conf.cpu().numpy() for i, box in enumerate(boxes): x1, y1, x2, y2 = map(int, box[:4]) conf = confidences[i] if len(confidences) > i else 0.0 detected_boxes.append((x1, y1, x2, y2, conf)) filtered_boxes = filter_and_merge_boxes(detected_boxes) if not tracking_initialized and filtered_boxes: # 选择置信度最高的目标进行跟踪 filtered_boxes = sorted(filtered_boxes, key=lambda b: b[4], reverse=True) x1, y1, x2, y2, _ = filtered_boxes[0] tracking_bbox = (x1, y1, x2 - x1, y2 - y1) tracker = cv2.TrackerCSRT_create() tracker.init(frame, tracking_bbox) tracking_initialized = True elif tracking_initialized: # 更新跟踪器 success, bbox = tracker.update(frame) if success: x, y, w, h = map(int, bbox) center = (x + w // 2, y + h // 2) center_history.append(center) # 检查中心点是否稳定在容忍范围内 if len(center_history) == tracking_window_size: initial_center = center_history[0] stable = all( np.linalg.norm(np.array(center) - np.array(initial_center)) <= tolerance_radius for center in center_history) if stable: cv2.putText(frame, "SLEEP", (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) else: tracking_initialized = False # 重新初始化跟踪器 # 使用image检测框的替代逻辑 for box in filtered_boxes: x1, y1, x2, y2, _ = box cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) # 写入处理后的帧 out.write(frame) cap.release() out.release() cv2.destroyAllWindows() print(f"已保存带注释的视频到: {output_video_path}") def filter_and_merge_boxes(boxes): filtered_boxes = [] threshold = 0.5 # IOU阈值 def iou(box1, box2): x1, y1, x2, y2 = box1 x1_, y1_, x2_, y2_ = box2 ix1, iy1 = max(x1, x1_), max(y1, y1_) ix2, iy2 = min(x2, x2_), min(y2, y2_) iw = max(ix2 - ix1 + 1, 0) ih = max(iy2 - iy1 + 1, 0) inter = iw * ih ua = (x2 - x1 + 1) * (y2 - y1 + 1) + (x2_ - x1_ + 1) * (y2_ - y1_) - inter return inter / ua for i, box1 in enumerate(boxes): keep = True for j, box2 in enumerate(filtered_boxes): if iou(box1[:4], box2[:4]) > threshold: keep = False break if keep: filtered_boxes.append(box1) return filtered_boxes # 使用实际视频路径进行推理,并指定输出文件夹 infer_and_draw_video(r'视频路径', r'输出路径')