# Ultralytics YOLO 🚀, AGPL-3.0 license from pathlib import Path import torch from ultralytics.data import YOLODataset from ultralytics.data.augment import Compose, Format, v8_transforms from ultralytics.models.yolo.detect import DetectionValidator from ultralytics.utils import colorstr, ops __all__ = 'RTDETRValidator', # tuple or list class RTDETRDataset(YOLODataset): """ Real-Time DEtection and TRacking (RT-DETR) dataset class extending the base YOLODataset class. This specialized dataset class is designed for use with the RT-DETR object detection model and is optimized for real-time detection and tracking tasks. """ def __init__(self, *args, data=None, **kwargs): """Initialize the RTDETRDataset class by inheriting from the YOLODataset class.""" super().__init__(*args, data=data, use_segments=False, use_keypoints=False, **kwargs) # NOTE: add stretch version load_image for RTDETR mosaic def load_image(self, i, rect_mode=False): """Loads 1 image from dataset index 'i', returns (im, resized hw).""" return super().load_image(i=i, rect_mode=rect_mode) def build_transforms(self, hyp=None): """Temporary, only for evaluation.""" if self.augment: hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0 hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0 transforms = v8_transforms(self, self.imgsz, hyp, stretch=True) else: # transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), auto=False, scaleFill=True)]) transforms = Compose([]) transforms.append( Format(bbox_format='xywh', normalize=True, return_mask=self.use_segments, return_keypoint=self.use_keypoints, batch_idx=True, mask_ratio=hyp.mask_ratio, mask_overlap=hyp.overlap_mask)) return transforms class RTDETRValidator(DetectionValidator): """ RTDETRValidator extends the DetectionValidator class to provide validation capabilities specifically tailored for the RT-DETR (Real-Time DETR) object detection model. The class allows building of an RTDETR-specific dataset for validation, applies Non-maximum suppression for post-processing, and updates evaluation metrics accordingly. Example: ```python from ultralytics.models.rtdetr import RTDETRValidator args = dict(model='rtdetr-l.pt', data='coco8.yaml') validator = RTDETRValidator(args=args) validator() ``` Note: For further details on the attributes and methods, refer to the parent DetectionValidator class. """ def build_dataset(self, img_path, mode='val', batch=None): """ Build an RTDETR Dataset. Args: img_path (str): Path to the folder containing images. mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode. batch (int, optional): Size of batches, this is for `rect`. Defaults to None. """ return RTDETRDataset( img_path=img_path, imgsz=self.args.imgsz, batch_size=batch, augment=False, # no augmentation hyp=self.args, rect=False, # no rect cache=self.args.cache or None, prefix=colorstr(f'{mode}: '), data=self.data) def postprocess(self, preds): """Apply Non-maximum suppression to prediction outputs.""" bs, _, nd = preds[0].shape bboxes, scores = preds[0].split((4, nd - 4), dim=-1) bboxes *= self.args.imgsz outputs = [torch.zeros((0, 6), device=bboxes.device)] * bs for i, bbox in enumerate(bboxes): # (300, 4) bbox = ops.xywh2xyxy(bbox) score, cls = scores[i].max(-1) # (300, ) # Do not need threshold for evaluation as only got 300 boxes here # idx = score > self.args.conf pred = torch.cat([bbox, score[..., None], cls[..., None]], dim=-1) # filter # Sort by confidence to correctly get internal metrics pred = pred[score.argsort(descending=True)] outputs[i] = pred # [idx] return outputs def update_metrics(self, preds, batch): """Metrics.""" for si, pred in enumerate(preds): idx = batch['batch_idx'] == si cls = batch['cls'][idx] bbox = batch['bboxes'][idx] nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions shape = batch['ori_shape'][si] correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init self.seen += 1 if npr == 0: if nl: self.stats.append((correct_bboxes, *torch.zeros((2, 0), device=self.device), cls.squeeze(-1))) if self.args.plots: self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1)) continue # Predictions if self.args.single_cls: pred[:, 5] = 0 predn = pred.clone() predn[..., [0, 2]] *= shape[1] / self.args.imgsz # native-space pred predn[..., [1, 3]] *= shape[0] / self.args.imgsz # native-space pred # Evaluate if nl: tbox = ops.xywh2xyxy(bbox) # target boxes tbox[..., [0, 2]] *= shape[1] # native-space pred tbox[..., [1, 3]] *= shape[0] # native-space pred labelsn = torch.cat((cls, tbox), 1) # native-space labels # NOTE: To get correct metrics, the inputs of `_process_batch` should always be float32 type. correct_bboxes = self._process_batch(predn.float(), labelsn) # TODO: maybe remove these `self.` arguments as they already are member variable if self.args.plots: self.confusion_matrix.process_batch(predn, labelsn) self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], cls.squeeze(-1))) # (conf, pcls, tcls) # Save if self.args.save_json: self.pred_to_json(predn, batch['im_file'][si]) if self.args.save_txt: file = self.save_dir / 'labels' / f'{Path(batch["im_file"][si]).stem}.txt' self.save_one_txt(predn, self.args.save_conf, shape, file)