Sleeping-post-detection-fir.../docs/ja/quickstart.md

199 lines
12 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

---
comments: true
description: Ultralyticsのpip、conda、git、Dockerを使用した様々なインストール方法を探索し、コマンドラインインターフェースまたはPythonプロジェクト内でのUltralyticsの使用方法を学びます。
keywords: Ultralyticsインストール, pipインストールUltralytics, DockerインストールUltralytics, Ultralyticsコマンドラインインターフェース, Ultralytics Pythonインターフェース
---
## Ultralyticsのインストール
Ultralyticsはpip、conda、Dockerを含むさまざまなインストール方法を提供しています。最新の安定版リリースである`ultralytics` pipパッケージを通じてYOLOv8をインストールするか、最新バージョンを取得するために[Ultralytics GitHubリポジトリ](https://github.com/ultralytics/ultralytics)をクローンします。Dockerは、ローカルインストールを回避し、孤立したコンテナ内でパッケージを実行するために使用できます。
!!! Example "インストール"
=== "Pipでのインストール推奨"
pipを使用して`ultralytics`パッケージをインストールするか、`pip install -U ultralytics`を実行して既存のインストールをアップデートします。`ultralytics`パッケージの詳細については、Python Package IndexPyPIを参照してください: [https://pypi.org/project/ultralytics/](https://pypi.org/project/ultralytics/)。
[![PyPI version](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics)
```bash
# PyPIからultralyticsパッケージをインストール
pip install ultralytics
```
GitHubの[リポジトリ](https://github.com/ultralytics/ultralytics)から直接`ultralytics`パッケージをインストールすることもできます。これは、最新の開発版が必要な場合に便利かもしれません。システムにGitコマンドラインツールがインストールされている必要があります。`@main`コマンドは`main`ブランチをインストールし、別のブランチ、例えば`@my-branch`に変更したり、`main`ブランチにデフォルトするために完全に削除することができます。
```bash
# GitHubからultralyticsパッケージをインストール
pip install git+https://github.com/ultralytics/ultralytics.git@main
```
=== "Condaでのインストール"
Condaはpipの代わりのパッケージマネージャーで、インストールにも使用できます。より詳細はAnacondaを参照してください [https://anaconda.org/conda-forge/ultralytics](https://anaconda.org/conda-forge/ultralytics)。Condaパッケージを更新するためのUltralyticsフィードストックリポジトリはこちらです [https://github.com/conda-forge/ultralytics-feedstock/](https://github.com/conda-forge/ultralytics-feedstock/)。
[![Conda Recipe](https://img.shields.io/badge/recipe-ultralytics-green.svg)](https://anaconda.org/conda-forge/ultralytics) [![Conda Downloads](https://img.shields.io/conda/dn/conda-forge/ultralytics.svg)](https://anaconda.org/conda-forge/ultralytics) [![Conda Version](https://img.shields.io/conda/vn/conda-forge/ultralytics.svg)](https://anaconda.org/conda-forge/ultralytics) [![Conda Platforms](https://img.shields.io/conda/pn/conda-forge/ultralytics.svg)](https://anaconda.org/conda-forge/ultralytics)
```bash
# Condaを使用してultralyticsパッケージをインストール
conda install -c conda-forge ultralytics
```
!!! Note "ノート"
CUDA環境でインストールする場合、パッケージマネージャーが競合を解決できるようにするため、`ultralytics`、`pytorch`、`pytorch-cuda`を同じコマンドで一緒にインストールするのがベストプラクティスです。または、CPU専用の`pytorch`パッケージに必要な場合は上書きするように`pytorch-cuda`を最後にインストールします。
```bash
# Condaを使用して一緒にすべてのパッケージをインストール
conda install -c pytorch -c nvidia -c conda-forge pytorch torchvision pytorch-cuda=11.8 ultralytics
```
### Conda Dockerイメージ
UltralyticsのConda Dockerイメージも[DockerHub](https://hub.docker.com/r/ultralytics/ultralytics)から利用可能です。これらのイメージは[Miniconda3](https://docs.conda.io/projects/miniconda/en/latest/)に基づいており、Conda環境で`ultralytics`を使用する簡単な方法です。
```bash
# イメージ名を変数として設定
t=ultralytics/ultralytics:latest-conda
# Docker Hubから最新のultralyticsイメージをプル
sudo docker pull $t
# すべてのGPUを持つコンテナでultralyticsイメージを実行
sudo docker run -it --ipc=host --gpus all $t # すべてのGPU
sudo docker run -it --ipc=host --gpus '"device=2,3"' $t # GPUを指定
```
=== "Gitクローン"
開発への貢献に興味がある場合や、最新のソースコードで実験したい場合は、`ultralytics`リポジトリをクローンしてください。クローンした後、ディレクトリに移動し、pipを使って編集可能モード`-e`でパッケージをインストールします。
```bash
# ultralyticsリポジトリをクローン
git clone https://github.com/ultralytics/ultralytics
# クローンしたディレクトリに移動
cd ultralytics
# 開発用に編集可能モードでパッケージをインストール
pip install -e .
```
必要な依存関係のリストについては、`ultralytics`の[requirements.txt](https://github.com/ultralytics/ultralytics/blob/main/requirements.txt)ファイルを参照してください。上記の全ての例では、必要な依存関係を全てインストールします。
<p align="center">
<br>
<iframe width="720" height="405" src="https://www.youtube.com/embed/_a7cVL9hqnk"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
</iframe>
<br>
<strong>Watch:</strong> Ultralytics YOLO Quick Start Guide
</p>
!!! Tip "ヒント"
PyTorchの要件はオペレーティングシステムとCUDAの要件によって異なるため、[https://pytorch.org/get-started/locally](https://pytorch.org/get-started/locally)に従って最初にPyTorchをインストールすることをお勧めします。
<a href="https://pytorch.org/get-started/locally/">
<img width="800" alt="PyTorch Installation Instructions" src="https://user-images.githubusercontent.com/26833433/228650108-ab0ec98a-b328-4f40-a40d-95355e8a84e3.png">
</a>
## CLIでUltralyticsを使用
UltralyticsコマンドラインインターフェースCLIを使用すると、Python環境がなくても単一の行のコマンドを簡単に実行できます。CLIはカスタマイズもPythonコードも必要ありません。単純にすべてのタスクを`yolo`コマンドでターミナルから実行することができます。コマンドラインからYOLOv8を使用する方法について詳しくは、[CLIガイド](/../usage/cli.md)を参照してください。
!!! Example "例"
=== "構文"
Ultralyticsの`yolo`コマンドは以下の構文を使用します:
```bash
yolo TASK MODE ARGS
ここで TASKオプションは[detect, segment, classify]のうちの1つ
MODE必須は[train, val, predict, export, track]のうちの1つ
ARGSオプションはデフォルトを上書きする任意の数のカスタム'arg=value'ペアです。
```
full [Configuration Guide](/../usage/cfg.md)または`yolo cfg`で全てのARGSを確認してください
=== "トレーニング"
10エポックにわたって初期学習率0.01で検出モデルをトレーニング
```bash
yolo train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
```
=== "予測"
画像サイズ320で事前トレーニングされたセグメンテーションモデルを使用してYouTubeビデオを予測
```bash
yolo predict model=yolov8n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320
```
=== "検証"
バッチサイズ1および画像サイズ640で事前トレーニングされた検出モデルを検証する
```bash
yolo val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640
```
=== "エクスポート"
画像サイズ224 x 128でYOLOv8n分類モデルをONNX形式にエクスポートTASKは不要
```bash
yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128
```
=== "特殊"
バージョンを確認したり、設定を表示したり、チェックを行ったりするための特別なコマンドを実行します:
```bash
yolo help
yolo checks
yolo version
yolo settings
yolo copy-cfg
yolo cfg
```
!!! Warning "警告"
引数は`arg=val`ペアとして渡され、`=`記号で分割され、ペア間にスペース` `が必要です。引数のプレフィックスに`--`や引数間にカンマ`,`を使用しないでください。
- `yolo predict model=yolov8n.pt imgsz=640 conf=0.25` &nbsp;
- `yolo predict model yolov8n.pt imgsz 640 conf 0.25` &nbsp;
- `yolo predict --model yolov8n.pt --imgsz 640 --conf 0.25` &nbsp;
[CLIガイド](/../usage/cli.md){ .md-button }
## PythonでUltralyticsを使用
YOLOv8のPythonインターフェースを使用すると、Pythonプロジェクトにシームレスに統合し、モデルをロード、実行、出力を処理することが可能です。簡単さと使いやすさを念頭に設計されたPythonインターフェースにより、ユーザーは素早くプロジェクトに物体検出、セグメンテーション、分類を実装することができます。このように、YOLOv8のPythonインターフェースは、これらの機能をPythonプロジェクトに取り入れたいと考えている方にとって貴重なツールです。
たとえば、ユーザーはモデルをロードして、トレーニングし、検証セットでのパフォーマンスを評価し、ONNX形式にエクスポートするまでの一連の処理を数行のコードで行うことができます。YOLOv8をPythonプロジェクトで使用する方法について詳しくは、[Pythonガイド](/../usage/python.md)を参照してください。
!!! Example "例"
```python
from ultralytics import YOLO
# スクラッチから新しいYOLOモデルを作成
model = YOLO('yolov8n.yaml')
# 事前トレーニドされたYOLOモデルをロードトレーニングに推奨
model = YOLO('yolov8n.pt')
# 'coco128.yaml'データセットを使用して3エポックでモデルをトレーニング
results = model.train(data='coco128.yaml', epochs=3)
# モデルのパフォーマンスを検証セットで評価
results = model.val()
# モデルを使用して画像で物体検出を実行
results = model('https://ultralytics.com/images/bus.jpg')
# モデルをONNX形式にエクスポート
success = model.export(format='onnx')
```
[Pythonガイド](/../usage/python.md){.md-button .md-button--primary}