Sleeping-post-detection-fir.../docs/zh/models/index.md

5.2 KiB
Raw Permalink Blame History

comments description keywords
true 探索 Ultralytics 支持的多样化 YOLO 系列、SAM、MobileSAM、FastSAM、YOLO-NAS 和 RT-DETR 模型。开启您的 CLI 和 Python 使用示例之旅。 Ultralytics, 文档, YOLO, SAM, MobileSAM, FastSAM, YOLO-NAS, RT-DETR, 模型, 架构, Python, CLI

Ultralytics 支持的模型

欢迎来到 Ultralytics 的模型文档!我们提供多种模型的支持,每种模型都针对特定任务量身定做,如对象检测实例分割图像分类姿态估计以及多对象跟踪。如果您有兴趣将您的模型架构贡献给 Ultralytics请查看我们的贡献指南

!!! Note "注意"

🚧 我们的多语言文档目前正在建设中,我们正在努力进行完善。感谢您的耐心等待!🙏

特色模型

以下是一些关键模型的介绍:

  1. YOLOv3:由 Joseph Redmon 最初开发的 YOLO 模型家族的第三版,以其高效的实时对象检测能力而闻名。
  2. YOLOv4:由 Alexey Bochkovskiy 在 2020 年发布的 YOLOv3 的 darknet 原生更新版本。
  3. YOLOv5Ultralytics 改进的 YOLO 架构版本,与先前版本相比,提供了更好的性能和速度权衡。
  4. YOLOv6:由美团在 2022 年发布,用于公司多个自主送货机器人中。
  5. YOLOv7YOLOv4 作者在 2022 年发布的更新版 YOLO 模型。
  6. YOLOv8 NEW 🚀YOLO 家族的最新版本,具备实例分割、姿态/关键点估计和分类等增强能力。
  7. Segment Anything Model (SAM)Meta 的 Segment Anything Model (SAM)。
  8. Mobile Segment Anything Model (MobileSAM):由庆熙大学开发的移动应用 MobileSAM。
  9. Fast Segment Anything Model (FastSAM):中国科学院自动化研究所图像与视频分析组开发的 FastSAM。
  10. YOLO-NASYOLO 神经网络结构搜索 (NAS) 模型。
  11. Realtime Detection Transformers (RT-DETR):百度 PaddlePaddle 实时检测变换器 (RT-DETR) 模型。



观看: 使用 Ultralytics YOLO 模型在几行代码中运行。

入门:使用示例

此示例提供了简单的 YOLO 训练和推理示例。有关这些和其他模式的完整文档,请查看PredictTrainValExport 文档页面。

请注意,以下示例适用于对象检测的 YOLOv8 Detect 模型。有关其他支持任务的详细信息,请查看SegmentClassifyPose 文档。

!!! Example "示例"

=== "Python"

    可将 PyTorch 预训练的 `*.pt` 模型以及配置文件 `*.yaml` 传入 `YOLO()`、`SAM()`、`NAS()` 和 `RTDETR()` 类,以在 Python 中创建模型实例:

    ```python
    from ultralytics import YOLO

    # 加载 COCO 预训练的 YOLOv8n 模型
    model = YOLO('yolov8n.pt')

    # 显示模型信息(可选)
    model.info()

    # 在 COCO8 示例数据集上训练模型 100 个周期
    results = model.train(data='coco8.yaml', epochs=100, imgsz=640)

    # 使用 YOLOv8n 模型对 'bus.jpg' 图像进行推理
    results = model('path/to/bus.jpg')
    ```

=== "CLI"

    CLI 命令可直接运行模型:

    ```bash
    # 加载 COCO 预训练的 YOLOv8n 模型,并在 COCO8 示例数据集上训练 100 个周期
    yolo train model=yolov8n.pt data=coco8.yaml epochs=100 imgsz=640

    # 加载 COCO 预训练的 YOLOv8n 模型,并对 'bus.jpg' 图像进行推理
    yolo predict model=yolov8n.pt source=path/to/bus.jpg
    ```

贡献新模型

有兴趣将您的模型贡献给 Ultralytics 吗?太好了!我们始终欢迎扩展我们的模型投资组合。

  1. Fork 仓库:从 Fork Ultralytics GitHub 仓库 开始。

  2. 克隆您的 Fork:将您的 Fork 克隆到您的本地机器,并创建一个新的分支进行工作。

  3. 实现您的模型:按照我们在贡献指南中提供的编码标准和指南添加您的模型。

  4. 彻底测试:确保彻底测试您的模型,无论是独立测试还是作为流水线的一部分。

  5. 创建拉取请求:一旦您对您的模型满意,就创建一个拉取请求以供主仓库审查。

  6. 代码审查与合并:经过审查,如果您的模型符合我们的标准,它将被合并到主仓库中。

有关详细步骤,请参阅我们的贡献指南