Sleeping-post-detection-fir.../docs/zh/models/yolov8.md

17 KiB
Raw Permalink Blame History

comments description keywords
true 探索YOLOv8的激动人心功能这是我们实时目标检测器的最新版本了解高级架构、预训练模型和精确度与速度的最佳平衡如何使YOLOv8成为您进行目标检测任务的理想选择。 YOLOv8Ultralytics实时目标检测器预训练模型文档目标检测YOLO系列高级架构精确度速度

YOLOv8

概述

YOLOv8是YOLO系列实时目标检测器的最新版本以其在准确度和速度方面的卓越性能而闻名。在构建在之前YOLO版本的基础上YOLOv8引入了新功能和优化使其成为各种应用领域中各种目标检测任务的理想选择。

Ultralytics YOLOv8

主要功能

  • 先进的主干和中间架构: YOLOv8采用最先进的主干和中间架构提供了更好的特征提取和目标检测性能。
  • 无锚分割Ultralytics头 YOLOv8采用无锚分割的Ultralytics头相比于基于锚点的方法可以提供更高的准确性和更高效的检测过程。
  • 优化的准确度和速度平衡: YOLOv8专注于在准确度和速度之间维持最佳平衡适用于各种实时目标检测任务。
  • 多种预训练模型: YOLOv8提供了一系列预训练模型以满足各种任务和性能要求更容易找到适合特定用例的模型。

支持的任务和模式

YOLOv8系列提供了多种模型每个模型专门用于计算机视觉中的特定任务。这些模型旨在满足各种要求从目标检测到更复杂的任务如实例分割、姿态/关键点检测和分类。

YOLOv8系列的每个变体都针对其相应的任务进行了优化确保高性能和准确性。此外这些模型与各种操作模式兼容包括推理验证训练导出,便于在部署和开发的不同阶段使用。

模型 文件名 任务 推理 验证 训练 导出
YOLOv8 yolov8n.pt yolov8s.pt yolov8m.pt yolov8l.pt yolov8x.pt 检测
YOLOv8-seg yolov8n-seg.pt yolov8s-seg.pt yolov8m-seg.pt yolov8l-seg.pt yolov8x-seg.pt 实例分割
YOLOv8-pose yolov8n-pose.pt yolov8s-pose.pt yolov8m-pose.pt yolov8l-pose.pt yolov8x-pose.pt yolov8x-pose-p6.pt 姿态/关键点
YOLOv8-cls yolov8n-cls.pt yolov8s-cls.pt yolov8m-cls.pt yolov8l-cls.pt yolov8x-cls.pt 分类

这个表格提供了YOLOv8模型变种的概览突出了它们在特定任务中的适用性以及它们与各种操作模式如推理、验证、训练和导出的兼容性。它展示了YOLOv8系列的多功能性和鲁棒性使它们适用于计算机视觉中各种应用。

性能指标

!!! Performance

=== "检测COCO"

    有关在[COCO](https://docs.ultralytics.com/datasets/detect/coco/)上训练的这些模型的用法示例,请参见[Detection Docs](https://docs.ultralytics.com/tasks/detect/)其中包括80个预训练的类别。

    | 模型                                                                                   | 大小<br><sup>(pixels) | mAP<sup>val<br>50-95 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) |
    | ---------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------------------- | ---------------------------------- | ------------------ | ----------------- |
    | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640                   | 37.3                 | 80.4                           | 0.99                                | 3.2                | 8.7               |
    | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640                   | 44.9                 | 128.4                          | 1.20                                | 11.2               | 28.6              |
    | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640                   | 50.2                 | 234.7                          | 1.83                                | 25.9               | 78.9              |
    | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640                   | 52.9                 | 375.2                          | 2.39                                | 43.7               | 165.2             |
    | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640                   | 53.9                 | 479.1                          | 3.53                                | 68.2               | 257.8             |

=== "检测Open Images V7"

    有关在[Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/)上训练的这些模型的用法示例,请参见[Detection Docs](https://docs.ultralytics.com/tasks/detect/)其中包括600个预训练的类别。

    | 模型                                                                                        | 大小<br><sup>(pixels) | mAP<sup>val<br>50-95 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) |
    | ------------------------------------------------------------------------------------------- | --------------------- | -------------------- | ------------------------------ | ---------------------------------- | ------------------ | ----------------- |
    | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-oiv7.pt) | 640                   | 18.4                 | 142.4                          | 1.21                                | 3.5                | 10.5              |
    | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-oiv7.pt) | 640                   | 27.7                 | 183.1                          | 1.40                                | 11.4               | 29.7              |
    | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-oiv7.pt) | 640                   | 33.6                 | 408.5                          | 2.26                                | 26.2               | 80.6              |
    | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-oiv7.pt) | 640                   | 34.9                 | 596.9                          | 2.43                                | 44.1               | 167.4             |
    | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-oiv7.pt) | 640                   | 36.3                 | 860.6                          | 3.56                                | 68.7               | 260.6             |

=== "分割COCO"

    有关在[COCO](https://docs.ultralytics.com/datasets/segment/coco/)上训练的这些模型的用法示例,请参见[Segmentation Docs](https://docs.ultralytics.com/tasks/segment/)其中包括80个预训练的类别。

    | 模型                                                                                         | 大小<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) |
    | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ---------------------------------- | ------------------ | ----------------- |
    | [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-seg.pt) | 640                   | 36.7                 | 30.5                  | 96.1                           | 1.21                                | 3.4                | 12.6              |
    | [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-seg.pt) | 640                   | 44.6                 | 36.8                  | 155.7                          | 1.47                                | 11.8               | 42.6              |
    | [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-seg.pt) | 640                   | 49.9                 | 40.8                  | 317.0                          | 2.18                                | 27.3               | 110.2             |
    | [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-seg.pt) | 640                   | 52.3                 | 42.6                  | 572.4                          | 2.79                                | 46.0               | 220.5             |
    | [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt) | 640                   | 53.4                 | 43.4                  | 712.1                          | 4.02                                | 71.8               | 344.1             |

=== "分类ImageNet"

    有关在[ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/)上训练的这些模型的用法示例,请参见[Classification Docs](https://docs.ultralytics.com/tasks/classify/)其中包括1000个预训练的类别。

    | 模型                                                                                           | 大小<br><sup>(pixels) | 准确率<br><sup>top1 | 准确率<br><sup>top5 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
    | ---------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------ | ------------------------------ | ---------------------------------- | ------------------ | ------------------------ |
    | [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224                   | 66.6               | 87.0               | 12.9                           | 0.31                                | 2.7                | 4.3                      |
    | [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-cls.pt) | 224                   | 72.3               | 91.1               | 23.4                           | 0.35                                | 6.4                | 13.5                     |
    | [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-cls.pt) | 224                   | 76.4               | 93.2               | 85.4                           | 0.62                                | 17.0               | 42.7                     |
    | [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-cls.pt) | 224                   | 78.0               | 94.1               | 163.0                          | 0.87                                | 37.5               | 99.7                     |
    | [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-cls.pt) | 224                   | 78.4               | 94.3               | 232.0                          | 1.01                                | 57.4               | 154.8                    |

=== "姿态COCO"

    有关在[COCO](https://docs.ultralytics.com/datasets/pose/coco/)上训练的这些模型的用法示例,请参见[Pose Estimation Docs](https://docs.ultralytics.com/tasks/segment/)其中包括1个预训练的类别'person'。

    | 模型                                                                                                | 大小<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) |
    | ---------------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ---------------------------------- | ------------------ | ----------------- |
    | [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-pose.pt)       | 640                   | 50.4                  | 80.1               | 131.8                          | 1.18                                | 3.3                | 9.2               |
    | [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-pose.pt)       | 640                   | 60.0                  | 86.2               | 233.2                          | 1.42                                | 11.6               | 30.2              |
    | [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-pose.pt)       | 640                   | 65.0                  | 88.8               | 456.3                          | 2.00                                | 26.4               | 81.0              |
    | [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-pose.pt)       | 640                   | 67.6                  | 90.0               | 784.5                          | 2.59                                | 44.4               | 168.6             |
    | [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose.pt)       | 640                   | 69.2                  | 90.2               | 1607.1                         | 3.73                                | 69.4               | 263.2             |
    | [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose-p6.pt) | 1280                  | 71.6                  | 91.2               | 4088.7                         | 10.04                               | 99.1               | 1066.4            |

用法示例

这个示例提供了关于YOLOv8训练和推理的简单示例。有关这些和其他模式的完整文档,请参见PredictTrainValExport文档页面。

请注意以下示例是针对用于目标检测的YOLOv8 Detect模型。有关其他支持的任务,请参见SegmentClassifyPose文档。

!!! Example "示例"

=== "Python"

    可以将PyTorch预训练的`*.pt`模型和配置`*.yaml`文件传递给`YOLO()`类在python中创建一个模型实例

    ```python
    from ultralytics import YOLO

    # 加载一个在COCO预训练的YOLOv8n模型
    model = YOLO('yolov8n.pt')

    # 显示模型信息(可选)
    model.info()

    # 使用COCO8示例数据集训练模型100个epoch
    results = model.train(data='coco8.yaml', epochs=100, imgsz=640)

    # 使用YOLOv8n模型在'bus.jpg'图片上运行推理
    results = model('path/to/bus.jpg')
    ```

=== "CLI"

    可以使用CLI命令直接运行模型

    ```bash
    # 加载一个在COCO预训练的YOLOv8n模型并在COCO8示例数据集上训练100个epoch
    yolo train model=yolov8n.pt data=coco8.yaml epochs=100 imgsz=640

    # 加载一个在COCO预训练的YOLOv8n模型并在'bus.jpg'图片上运行推理
    yolo predict model=yolov8n.pt source=path/to/bus.jpg
    ```

引用和致谢

如果您在工作中使用YOLOv8模型或此存储库中的其他软件请使用以下格式进行引用

!!! Quote "引用"

=== "BibTeX"

    ```bibtex
    @software{yolov8_ultralytics,
      author = {Glenn Jocher and Ayush Chaurasia and Jing Qiu},
      title = {Ultralytics YOLOv8},
      version = {8.0.0},
      year = {2023},
      url = {https://github.com/ultralytics/ultralytics},
      orcid = {0000-0001-5950-6979, 0000-0002-7603-6750, 0000-0003-3783-7069},
      license = {AGPL-3.0}
    }
    ```

请注意DOI正在等待中DOI将在可用时添加到引用中。YOLOv8模型根据AGPL-3.0企业许可证提供。