Sleeping-post-detection-fir.../docs/zh/modes/benchmark.md

6.1 KiB
Raw Permalink Blame History

comments description keywords
了解如何评估YOLOv8在各种导出格式下的速度和准确性获取mAP50-95、accuracy_top5等指标的洞察。 Ultralytics, YOLOv8, 基准测试, 速度分析, 准确性分析, mAP50-95, accuracy_top5, ONNX, OpenVINO, TensorRT, YOLO导出格式

使用Ultralytics YOLO进行模型基准测试

Ultralytics YOLO生态系统和集成

介绍

一旦您的模型经过训练和验证下一个合乎逻辑的步骤是评估它在各种实际场景中的性能。Ultralytics YOLOv8的基准模式通过提供一个健壮的框架来评估模型在一系列导出格式中的速度和准确性为此目的服务。

为什么基准测试至关重要?

  • 明智的决策: 洞察速度和准确性之间的权衡。
  • 资源分配: 理解不同的导出格式在不同硬件上的性能表现。
  • 优化: 了解哪种导出格式为您的特定用例提供最佳性能。
  • 成本效益: 根据基准测试结果,更有效地利用硬件资源。

基准模式的关键指标

  • mAP50-95 用于物体检测、分割和姿态估计。
  • accuracy_top5 用于图像分类。
  • 推断时间: 处理每张图片的时间(毫秒)。

支持的导出格式

  • ONNX 为了最佳的CPU性能
  • TensorRT 为了最大化的GPU效率
  • OpenVINO 针对Intel硬件的优化
  • CoreML、TensorFlow SavedModel 等: 满足多样化部署需求。

!!! 技巧 "提示"

* 导出到ONNX或OpenVINO可实现高达3倍CPU速度提升。
* 导出到TensorRT可实现高达5倍GPU速度提升。

使用示例

在所有支持的导出格式上运行YOLOv8n基准测试包括ONNX、TensorRT等。更多导出参数的完整列表请见下方的参数部分。

!!! Example "示例"

=== "Python"

    ```python
    from ultralytics.utils.benchmarks import benchmark

    # 在GPU上进行基准测试
    benchmark(model='yolov8n.pt', data='coco8.yaml', imgsz=640, half=False, device=0)
    ```
=== "CLI"

    ```bash
    yolo benchmark model=yolov8n.pt data='coco8.yaml' imgsz=640 half=False device=0
    ```

参数

参数如 modeldataimgszhalfdeviceverbose 等,为用户提供了灵活性,以便根据具体需求微调基准测试,并轻松比较不同导出格式的性能。

描述
model None 模型文件路径,如 yolov8n.pt, yolov8n.yaml
data None 引用基准测试数据集的YAML路径标记为 val
imgsz 640 图像大小作为标量或h, w列表如 (640, 480)
half False FP16量化
int8 False INT8量化
device None 运行设备,如 cuda device=0 或 device=0,1,2,3 或 device=cpu
verbose False 错误时不继续(布尔值),或验证阈值下限(浮点数)

导出格式

基准测试将尝试在下方列出的所有可能的导出格式上自动运行。

格式 format 参数 模型 元数据 参数
PyTorch - yolov8n.pt -
TorchScript torchscript yolov8n.torchscript imgsz, optimize
ONNX onnx yolov8n.onnx imgsz, half, dynamic, simplify, opset
OpenVINO openvino yolov8n_openvino_model/ imgsz, half
TensorRT engine yolov8n.engine imgsz, half, dynamic, simplify, workspace
CoreML coreml yolov8n.mlpackage imgsz, half, int8, nms
TF SavedModel saved_model yolov8n_saved_model/ imgsz, keras
TF GraphDef pb yolov8n.pb imgsz
TF Lite tflite yolov8n.tflite imgsz, half, int8
TF Edge TPU edgetpu yolov8n_edgetpu.tflite imgsz
TF.js tfjs yolov8n_web_model/ imgsz
PaddlePaddle paddle yolov8n_paddle_model/ imgsz
ncnn ncnn yolov8n_ncnn_model/ imgsz, half

导出页面查看完整的 export 详情。