Sleeping-post-detection-fir.../fps01.py

145 lines
5.2 KiB
Python

#解决重叠框问题,并调试人头框,可显示多人头,但是人头框闪烁
import os
import cv2
import numpy as np
from collections import deque
from ultralytics import YOLO
# YOLOv8模型路径
model_path = r'detect\train\weights\best.pt'
model = YOLO(model_path)
# 动态检测参数
tracking_window_size = 250 # 10秒对应的帧数
center_history = deque(maxlen=tracking_window_size)
tracker = None # 跟踪器变量
tracking_initialized = False
# 定义头部中心点的容忍范围(像素)
tolerance_radius = 20 # 你可以根据实际需要调整
detection_interval = 10 # 目标检测的帧间隔
def infer_and_draw_video(video_path, output_folder):
# 打开RTSP视频流
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("错误:无法打开视频流。")
return
# 获取视频属性
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# 创建视频写入对象
output_video_path = os.path.join(output_folder, 'output_video.mp4')
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # 使用mp4v编解码器
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
global tracking_initialized
global center_history
global tracker
frame_counter = 0 # 帧计数器
while True:
ret, frame = cap.read()
if not ret:
print("视频流读取结束或出错。")
break
frame_counter += 1
filtered_boxes = [] # 确保在进入目标检测逻辑之前初始化
if frame_counter % detection_interval == 0: # 每一定帧数进行目标检测
# 使用YOLOv8进行目标检测
results = model(frame)
detected_boxes = []
if results:
for result in results:
if result.boxes is not None and len(result.boxes.xyxy) > 0:
boxes = result.boxes.xyxy.cpu().numpy()
confidences = result.boxes.conf.cpu().numpy()
for i, box in enumerate(boxes):
x1, y1, x2, y2 = map(int, box[:4])
conf = confidences[i] if len(confidences) > i else 0.0
detected_boxes.append((x1, y1, x2, y2, conf))
filtered_boxes = filter_and_merge_boxes(detected_boxes)
if not tracking_initialized and filtered_boxes:
# 选择置信度最高的目标进行跟踪
filtered_boxes = sorted(filtered_boxes, key=lambda b: b[4], reverse=True)
x1, y1, x2, y2, _ = filtered_boxes[0]
tracking_bbox = (x1, y1, x2 - x1, y2 - y1)
tracker = cv2.TrackerCSRT_create()
tracker.init(frame, tracking_bbox)
tracking_initialized = True
elif tracking_initialized:
# 更新跟踪器
success, bbox = tracker.update(frame)
if success:
x, y, w, h = map(int, bbox)
center = (x + w // 2, y + h // 2)
center_history.append(center)
# 检查中心点是否稳定在容忍范围内
if len(center_history) == tracking_window_size:
initial_center = center_history[0]
stable = all(
np.linalg.norm(np.array(center) - np.array(initial_center)) <= tolerance_radius for
center in center_history)
if stable:
cv2.putText(frame, "SLEEP", (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
else:
tracking_initialized = False # 重新初始化跟踪器
# 使用image检测框的替代逻辑
for box in filtered_boxes:
x1, y1, x2, y2, _ = box
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
# 写入处理后的帧
out.write(frame)
cap.release()
out.release()
cv2.destroyAllWindows()
print(f"已保存带注释的视频到: {output_video_path}")
def filter_and_merge_boxes(boxes):
filtered_boxes = []
threshold = 0.5 # IOU阈值
def iou(box1, box2):
x1, y1, x2, y2 = box1
x1_, y1_, x2_, y2_ = box2
ix1, iy1 = max(x1, x1_), max(y1, y1_)
ix2, iy2 = min(x2, x2_), min(y2, y2_)
iw = max(ix2 - ix1 + 1, 0)
ih = max(iy2 - iy1 + 1, 0)
inter = iw * ih
ua = (x2 - x1 + 1) * (y2 - y1 + 1) + (x2_ - x1_ + 1) * (y2_ - y1_) - inter
return inter / ua
for i, box1 in enumerate(boxes):
keep = True
for j, box2 in enumerate(filtered_boxes):
if iou(box1[:4], box2[:4]) > threshold:
keep = False
break
if keep:
filtered_boxes.append(box1)
return filtered_boxes
# 使用实际视频路径进行推理,并指定输出文件夹
infer_and_draw_video(r'视频路径',
r'输出路径')