Sleeping-post-detection-fir.../fps03.py

152 lines
5.7 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

#解决多人头问题但是cpu处理速度跟不上只能运行一小段时间
import os
import cv2
import numpy as np
from collections import deque
from ultralytics import YOLO
# YOLOv8模型路径
model_path = r'detect\train\weights\best.pt'
model = YOLO(model_path)
# 动态检测参数
tracking_window_size = 250 # 10秒对应的帧数
center_history = deque(maxlen=tracking_window_size)
tracking_initialized = False
tracker_list = [] # 跟踪器列表
# 定义头部中心点的容忍范围(像素)
tolerance_radius = 20 # 你可以根据实际需要调整
detection_interval = 10 # 目标检测的帧间隔
def infer_and_draw_video(video_path, output_folder):
global tracking_initialized
global center_history
global tracker_list
# 打开RTSP视频流
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("错误:无法打开视频流。")
return
# 获取视频属性
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# 创建视频写入对象
output_video_path = os.path.join(output_folder, 'output_video.mp4')
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # 使用mp4v编解码器
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
frame_counter = 0 # 帧计数器
last_detection_boxes = [] # 上一帧检测到的框
while True:
ret, frame = cap.read()
if not ret:
print("视频流读取结束或出错。")
break
frame_counter += 1
if frame_counter % detection_interval == 0: # 每一定帧数进行目标检测
# 使用YOLOv8进行目标检测
results = model(frame)
detected_boxes = []
if results:
for result in results:
if result.boxes is not None and len(result.boxes.xyxy) > 0:
boxes = result.boxes.xyxy.cpu().numpy()
confidences = result.boxes.conf.cpu().numpy()
for i, box in enumerate(boxes):
x1, y1, x2, y2 = map(int, box[:4])
conf = confidences[i] if len(confidences) > i else 0.0
detected_boxes.append((x1, y1, x2, y2, conf))
filtered_boxes = filter_and_merge_boxes(detected_boxes)
if filtered_boxes:
# 对每个检测到的目标初始化一个跟踪器
tracker_list = [cv2.TrackerCSRT_create() for _ in filtered_boxes]
for i, box in enumerate(filtered_boxes):
x1, y1, x2, y2, _ = box
tracking_bbox = (x1, y1, x2 - x1, y2 - y1)
tracker_list[i].init(frame, tracking_bbox)
last_detection_boxes = filtered_boxes
tracking_initialized = True
else:
# 如果没有检测到框,则重置跟踪器
tracking_initialized = False
elif tracking_initialized:
# 更新所有跟踪器
for tracker in tracker_list:
success, bbox = tracker.update(frame)
if success:
x, y, w, h = map(int, bbox)
center = (x + w // 2, y + h // 2)
center_history.append(center)
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.circle(frame, center, 5, (255, 0, 0), -1)
# 检查中心点是否稳定在容忍范围内
if len(center_history) == tracking_window_size:
initial_center = center_history[0]
stable = all(np.linalg.norm(np.array(center) - np.array(initial_center)) <= tolerance_radius for center in center_history)
if stable:
cv2.putText(frame, "SLEEP", (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
else:
# 跟踪失败,重置跟踪器
tracking_initialized = False
tracker_list = []
# 如果跟踪失败但有检测到的目标框,显示检测框
if not tracking_initialized and last_detection_boxes:
for box in last_detection_boxes:
x1, y1, x2, y2, _ = box
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
center = (x1 + (x2 - x1) // 2, y1 + (y2 - y1) // 2)
cv2.circle(frame, center, 5, (255, 0, 0), -1)
# 写入处理后的帧
out.write(frame)
cap.release()
out.release()
cv2.destroyAllWindows()
print(f"已保存带注释的视频到: {output_video_path}")
def filter_and_merge_boxes(boxes):
filtered_boxes = []
threshold = 0.5 # IOU阈值
def iou(box1, box2):
x1, y1, x2, y2 = box1
x1_, y1_, x2_, y2_ = box2
ix1, iy1 = max(x1, x1_), max(y1, y1_)
ix2, iy2 = min(x2, x2_), min(y2, y2_)
iw = max(ix2 - ix1 + 1, 0)
ih = max(iy2 - iy1 + 1, 0)
inter = iw * ih
ua = (x2 - x1 + 1) * (y2 - y1 + 1) + (x2_ - x1_ + 1) * (y2_ - y1_) - inter
return inter / ua
for i, box1 in enumerate(boxes):
keep = True
for j, box2 in enumerate(filtered_boxes):
if iou(box1[:4], box2[:4]) > threshold:
keep = False
break
if keep:
filtered_boxes.append(box1)
return filtered_boxes
# 使用实际视频路径进行推理,并指定输出文件夹
infer_and_draw_video(r'视频路径', r'输出路径')
#infer_and_draw_video(r'摄像头网络串流', r'输出路径')