1108 lines
46 KiB
Python
1108 lines
46 KiB
Python
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
import math
|
|
import random
|
|
from copy import deepcopy
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
import torchvision.transforms as T
|
|
|
|
from ultralytics.utils import LOGGER, colorstr
|
|
from ultralytics.utils.checks import check_version
|
|
from ultralytics.utils.instance import Instances
|
|
from ultralytics.utils.metrics import bbox_ioa
|
|
from ultralytics.utils.ops import segment2box
|
|
|
|
from .utils import polygons2masks, polygons2masks_overlap
|
|
|
|
|
|
# TODO: we might need a BaseTransform to make all these augments be compatible with both classification and semantic
|
|
class BaseTransform:
|
|
"""
|
|
Base class for image transformations.
|
|
|
|
This is a generic transformation class that can be extended for specific image processing needs.
|
|
The class is designed to be compatible with both classification and semantic segmentation tasks.
|
|
|
|
Methods:
|
|
__init__: Initializes the BaseTransform object.
|
|
apply_image: Applies image transformation to labels.
|
|
apply_instances: Applies transformations to object instances in labels.
|
|
apply_semantic: Applies semantic segmentation to an image.
|
|
__call__: Applies all label transformations to an image, instances, and semantic masks.
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
"""Initializes the BaseTransform object."""
|
|
pass
|
|
|
|
def apply_image(self, labels):
|
|
"""Applies image transformations to labels."""
|
|
pass
|
|
|
|
def apply_instances(self, labels):
|
|
"""Applies transformations to object instances in labels."""
|
|
pass
|
|
|
|
def apply_semantic(self, labels):
|
|
"""Applies semantic segmentation to an image."""
|
|
pass
|
|
|
|
def __call__(self, labels):
|
|
"""Applies all label transformations to an image, instances, and semantic masks."""
|
|
self.apply_image(labels)
|
|
self.apply_instances(labels)
|
|
self.apply_semantic(labels)
|
|
|
|
|
|
class Compose:
|
|
"""Class for composing multiple image transformations."""
|
|
|
|
def __init__(self, transforms):
|
|
"""Initializes the Compose object with a list of transforms."""
|
|
self.transforms = transforms
|
|
|
|
def __call__(self, data):
|
|
"""Applies a series of transformations to input data."""
|
|
for t in self.transforms:
|
|
data = t(data)
|
|
return data
|
|
|
|
def append(self, transform):
|
|
"""Appends a new transform to the existing list of transforms."""
|
|
self.transforms.append(transform)
|
|
|
|
def tolist(self):
|
|
"""Converts the list of transforms to a standard Python list."""
|
|
return self.transforms
|
|
|
|
def __repr__(self):
|
|
"""Returns a string representation of the object."""
|
|
return f"{self.__class__.__name__}({', '.join([f'{t}' for t in self.transforms])})"
|
|
|
|
|
|
class BaseMixTransform:
|
|
"""
|
|
Class for base mix (MixUp/Mosaic) transformations.
|
|
|
|
This implementation is from mmyolo.
|
|
"""
|
|
|
|
def __init__(self, dataset, pre_transform=None, p=0.0) -> None:
|
|
"""Initializes the BaseMixTransform object with dataset, pre_transform, and probability."""
|
|
self.dataset = dataset
|
|
self.pre_transform = pre_transform
|
|
self.p = p
|
|
|
|
def __call__(self, labels):
|
|
"""Applies pre-processing transforms and mixup/mosaic transforms to labels data."""
|
|
if random.uniform(0, 1) > self.p:
|
|
return labels
|
|
|
|
# Get index of one or three other images
|
|
indexes = self.get_indexes()
|
|
if isinstance(indexes, int):
|
|
indexes = [indexes]
|
|
|
|
# Get images information will be used for Mosaic or MixUp
|
|
mix_labels = [self.dataset.get_image_and_label(i) for i in indexes]
|
|
|
|
if self.pre_transform is not None:
|
|
for i, data in enumerate(mix_labels):
|
|
mix_labels[i] = self.pre_transform(data)
|
|
labels['mix_labels'] = mix_labels
|
|
|
|
# Mosaic or MixUp
|
|
labels = self._mix_transform(labels)
|
|
labels.pop('mix_labels', None)
|
|
return labels
|
|
|
|
def _mix_transform(self, labels):
|
|
"""Applies MixUp or Mosaic augmentation to the label dictionary."""
|
|
raise NotImplementedError
|
|
|
|
def get_indexes(self):
|
|
"""Gets a list of shuffled indexes for mosaic augmentation."""
|
|
raise NotImplementedError
|
|
|
|
|
|
class Mosaic(BaseMixTransform):
|
|
"""
|
|
Mosaic augmentation.
|
|
|
|
This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image.
|
|
The augmentation is applied to a dataset with a given probability.
|
|
|
|
Attributes:
|
|
dataset: The dataset on which the mosaic augmentation is applied.
|
|
imgsz (int, optional): Image size (height and width) after mosaic pipeline of a single image. Default to 640.
|
|
p (float, optional): Probability of applying the mosaic augmentation. Must be in the range 0-1. Default to 1.0.
|
|
n (int, optional): The grid size, either 4 (for 2x2) or 9 (for 3x3).
|
|
"""
|
|
|
|
def __init__(self, dataset, imgsz=640, p=1.0, n=4):
|
|
"""Initializes the object with a dataset, image size, probability, and border."""
|
|
assert 0 <= p <= 1.0, f'The probability should be in range [0, 1], but got {p}.'
|
|
assert n in (4, 9), 'grid must be equal to 4 or 9.'
|
|
super().__init__(dataset=dataset, p=p)
|
|
self.dataset = dataset
|
|
self.imgsz = imgsz
|
|
self.border = (-imgsz // 2, -imgsz // 2) # width, height
|
|
self.n = n
|
|
|
|
def get_indexes(self, buffer=True):
|
|
"""Return a list of random indexes from the dataset."""
|
|
if buffer: # select images from buffer
|
|
return random.choices(list(self.dataset.buffer), k=self.n - 1)
|
|
else: # select any images
|
|
return [random.randint(0, len(self.dataset) - 1) for _ in range(self.n - 1)]
|
|
|
|
def _mix_transform(self, labels):
|
|
"""Apply mixup transformation to the input image and labels."""
|
|
assert labels.get('rect_shape', None) is None, 'rect and mosaic are mutually exclusive.'
|
|
assert len(labels.get('mix_labels', [])), 'There are no other images for mosaic augment.'
|
|
return self._mosaic4(labels) if self.n == 4 else self._mosaic9(labels)
|
|
|
|
def _mosaic4(self, labels):
|
|
"""Create a 2x2 image mosaic."""
|
|
mosaic_labels = []
|
|
s = self.imgsz
|
|
yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.border) # mosaic center x, y
|
|
for i in range(4):
|
|
labels_patch = labels if i == 0 else labels['mix_labels'][i - 1]
|
|
# Load image
|
|
img = labels_patch['img']
|
|
h, w = labels_patch.pop('resized_shape')
|
|
|
|
# Place img in img4
|
|
if i == 0: # top left
|
|
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
|
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
|
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
|
|
elif i == 1: # top right
|
|
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
|
|
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
|
|
elif i == 2: # bottom left
|
|
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
|
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
|
|
elif i == 3: # bottom right
|
|
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
|
|
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
|
|
|
|
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
|
padw = x1a - x1b
|
|
padh = y1a - y1b
|
|
|
|
labels_patch = self._update_labels(labels_patch, padw, padh)
|
|
mosaic_labels.append(labels_patch)
|
|
final_labels = self._cat_labels(mosaic_labels)
|
|
final_labels['img'] = img4
|
|
return final_labels
|
|
|
|
def _mosaic9(self, labels):
|
|
"""Create a 3x3 image mosaic."""
|
|
mosaic_labels = []
|
|
s = self.imgsz
|
|
hp, wp = -1, -1 # height, width previous
|
|
for i in range(9):
|
|
labels_patch = labels if i == 0 else labels['mix_labels'][i - 1]
|
|
# Load image
|
|
img = labels_patch['img']
|
|
h, w = labels_patch.pop('resized_shape')
|
|
|
|
# Place img in img9
|
|
if i == 0: # center
|
|
img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
|
h0, w0 = h, w
|
|
c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
|
|
elif i == 1: # top
|
|
c = s, s - h, s + w, s
|
|
elif i == 2: # top right
|
|
c = s + wp, s - h, s + wp + w, s
|
|
elif i == 3: # right
|
|
c = s + w0, s, s + w0 + w, s + h
|
|
elif i == 4: # bottom right
|
|
c = s + w0, s + hp, s + w0 + w, s + hp + h
|
|
elif i == 5: # bottom
|
|
c = s + w0 - w, s + h0, s + w0, s + h0 + h
|
|
elif i == 6: # bottom left
|
|
c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
|
|
elif i == 7: # left
|
|
c = s - w, s + h0 - h, s, s + h0
|
|
elif i == 8: # top left
|
|
c = s - w, s + h0 - hp - h, s, s + h0 - hp
|
|
|
|
padw, padh = c[:2]
|
|
x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords
|
|
|
|
# Image
|
|
img9[y1:y2, x1:x2] = img[y1 - padh:, x1 - padw:] # img9[ymin:ymax, xmin:xmax]
|
|
hp, wp = h, w # height, width previous for next iteration
|
|
|
|
# Labels assuming imgsz*2 mosaic size
|
|
labels_patch = self._update_labels(labels_patch, padw + self.border[0], padh + self.border[1])
|
|
mosaic_labels.append(labels_patch)
|
|
final_labels = self._cat_labels(mosaic_labels)
|
|
|
|
final_labels['img'] = img9[-self.border[0]:self.border[0], -self.border[1]:self.border[1]]
|
|
return final_labels
|
|
|
|
@staticmethod
|
|
def _update_labels(labels, padw, padh):
|
|
"""Update labels."""
|
|
nh, nw = labels['img'].shape[:2]
|
|
labels['instances'].convert_bbox(format='xyxy')
|
|
labels['instances'].denormalize(nw, nh)
|
|
labels['instances'].add_padding(padw, padh)
|
|
return labels
|
|
|
|
def _cat_labels(self, mosaic_labels):
|
|
"""Return labels with mosaic border instances clipped."""
|
|
if len(mosaic_labels) == 0:
|
|
return {}
|
|
cls = []
|
|
instances = []
|
|
imgsz = self.imgsz * 2 # mosaic imgsz
|
|
for labels in mosaic_labels:
|
|
cls.append(labels['cls'])
|
|
instances.append(labels['instances'])
|
|
final_labels = {
|
|
'im_file': mosaic_labels[0]['im_file'],
|
|
'ori_shape': mosaic_labels[0]['ori_shape'],
|
|
'resized_shape': (imgsz, imgsz),
|
|
'cls': np.concatenate(cls, 0),
|
|
'instances': Instances.concatenate(instances, axis=0),
|
|
'mosaic_border': self.border} # final_labels
|
|
final_labels['instances'].clip(imgsz, imgsz)
|
|
good = final_labels['instances'].remove_zero_area_boxes()
|
|
final_labels['cls'] = final_labels['cls'][good]
|
|
return final_labels
|
|
|
|
|
|
class MixUp(BaseMixTransform):
|
|
"""Class for applying MixUp augmentation to the dataset."""
|
|
|
|
def __init__(self, dataset, pre_transform=None, p=0.0) -> None:
|
|
"""Initializes MixUp object with dataset, pre_transform, and probability of applying MixUp."""
|
|
super().__init__(dataset=dataset, pre_transform=pre_transform, p=p)
|
|
|
|
def get_indexes(self):
|
|
"""Get a random index from the dataset."""
|
|
return random.randint(0, len(self.dataset) - 1)
|
|
|
|
def _mix_transform(self, labels):
|
|
"""Applies MixUp augmentation as per https://arxiv.org/pdf/1710.09412.pdf."""
|
|
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
|
|
labels2 = labels['mix_labels'][0]
|
|
labels['img'] = (labels['img'] * r + labels2['img'] * (1 - r)).astype(np.uint8)
|
|
labels['instances'] = Instances.concatenate([labels['instances'], labels2['instances']], axis=0)
|
|
labels['cls'] = np.concatenate([labels['cls'], labels2['cls']], 0)
|
|
return labels
|
|
|
|
|
|
class RandomPerspective:
|
|
"""
|
|
Implements random perspective and affine transformations on images and corresponding bounding boxes, segments, and
|
|
keypoints. These transformations include rotation, translation, scaling, and shearing. The class also offers the
|
|
option to apply these transformations conditionally with a specified probability.
|
|
|
|
Attributes:
|
|
degrees (float): Degree range for random rotations.
|
|
translate (float): Fraction of total width and height for random translation.
|
|
scale (float): Scaling factor interval, e.g., a scale factor of 0.1 allows a resize between 90%-110%.
|
|
shear (float): Shear intensity (angle in degrees).
|
|
perspective (float): Perspective distortion factor.
|
|
border (tuple): Tuple specifying mosaic border.
|
|
pre_transform (callable): A function/transform to apply to the image before starting the random transformation.
|
|
|
|
Methods:
|
|
affine_transform(img, border): Applies a series of affine transformations to the image.
|
|
apply_bboxes(bboxes, M): Transforms bounding boxes using the calculated affine matrix.
|
|
apply_segments(segments, M): Transforms segments and generates new bounding boxes.
|
|
apply_keypoints(keypoints, M): Transforms keypoints.
|
|
__call__(labels): Main method to apply transformations to both images and their corresponding annotations.
|
|
box_candidates(box1, box2): Filters out bounding boxes that don't meet certain criteria post-transformation.
|
|
"""
|
|
|
|
def __init__(self,
|
|
degrees=0.0,
|
|
translate=0.1,
|
|
scale=0.5,
|
|
shear=0.0,
|
|
perspective=0.0,
|
|
border=(0, 0),
|
|
pre_transform=None):
|
|
"""Initializes RandomPerspective object with transformation parameters."""
|
|
|
|
self.degrees = degrees
|
|
self.translate = translate
|
|
self.scale = scale
|
|
self.shear = shear
|
|
self.perspective = perspective
|
|
self.border = border # mosaic border
|
|
self.pre_transform = pre_transform
|
|
|
|
def affine_transform(self, img, border):
|
|
"""
|
|
Applies a sequence of affine transformations centered around the image center.
|
|
|
|
Args:
|
|
img (ndarray): Input image.
|
|
border (tuple): Border dimensions.
|
|
|
|
Returns:
|
|
img (ndarray): Transformed image.
|
|
M (ndarray): Transformation matrix.
|
|
s (float): Scale factor.
|
|
"""
|
|
|
|
# Center
|
|
C = np.eye(3, dtype=np.float32)
|
|
|
|
C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
|
|
C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
|
|
|
|
# Perspective
|
|
P = np.eye(3, dtype=np.float32)
|
|
P[2, 0] = random.uniform(-self.perspective, self.perspective) # x perspective (about y)
|
|
P[2, 1] = random.uniform(-self.perspective, self.perspective) # y perspective (about x)
|
|
|
|
# Rotation and Scale
|
|
R = np.eye(3, dtype=np.float32)
|
|
a = random.uniform(-self.degrees, self.degrees)
|
|
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
|
|
s = random.uniform(1 - self.scale, 1 + self.scale)
|
|
# s = 2 ** random.uniform(-scale, scale)
|
|
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
|
|
|
|
# Shear
|
|
S = np.eye(3, dtype=np.float32)
|
|
S[0, 1] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) # x shear (deg)
|
|
S[1, 0] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) # y shear (deg)
|
|
|
|
# Translation
|
|
T = np.eye(3, dtype=np.float32)
|
|
T[0, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[0] # x translation (pixels)
|
|
T[1, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[1] # y translation (pixels)
|
|
|
|
# Combined rotation matrix
|
|
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
|
|
# Affine image
|
|
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
|
|
if self.perspective:
|
|
img = cv2.warpPerspective(img, M, dsize=self.size, borderValue=(114, 114, 114))
|
|
else: # affine
|
|
img = cv2.warpAffine(img, M[:2], dsize=self.size, borderValue=(114, 114, 114))
|
|
return img, M, s
|
|
|
|
def apply_bboxes(self, bboxes, M):
|
|
"""
|
|
Apply affine to bboxes only.
|
|
|
|
Args:
|
|
bboxes (ndarray): list of bboxes, xyxy format, with shape (num_bboxes, 4).
|
|
M (ndarray): affine matrix.
|
|
|
|
Returns:
|
|
new_bboxes (ndarray): bboxes after affine, [num_bboxes, 4].
|
|
"""
|
|
n = len(bboxes)
|
|
if n == 0:
|
|
return bboxes
|
|
|
|
xy = np.ones((n * 4, 3), dtype=bboxes.dtype)
|
|
xy[:, :2] = bboxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
|
|
xy = xy @ M.T # transform
|
|
xy = (xy[:, :2] / xy[:, 2:3] if self.perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
|
|
|
|
# Create new boxes
|
|
x = xy[:, [0, 2, 4, 6]]
|
|
y = xy[:, [1, 3, 5, 7]]
|
|
return np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1)), dtype=bboxes.dtype).reshape(4, n).T
|
|
|
|
def apply_segments(self, segments, M):
|
|
"""
|
|
Apply affine to segments and generate new bboxes from segments.
|
|
|
|
Args:
|
|
segments (ndarray): list of segments, [num_samples, 500, 2].
|
|
M (ndarray): affine matrix.
|
|
|
|
Returns:
|
|
new_segments (ndarray): list of segments after affine, [num_samples, 500, 2].
|
|
new_bboxes (ndarray): bboxes after affine, [N, 4].
|
|
"""
|
|
n, num = segments.shape[:2]
|
|
if n == 0:
|
|
return [], segments
|
|
|
|
xy = np.ones((n * num, 3), dtype=segments.dtype)
|
|
segments = segments.reshape(-1, 2)
|
|
xy[:, :2] = segments
|
|
xy = xy @ M.T # transform
|
|
xy = xy[:, :2] / xy[:, 2:3]
|
|
segments = xy.reshape(n, -1, 2)
|
|
bboxes = np.stack([segment2box(xy, self.size[0], self.size[1]) for xy in segments], 0)
|
|
return bboxes, segments
|
|
|
|
def apply_keypoints(self, keypoints, M):
|
|
"""
|
|
Apply affine to keypoints.
|
|
|
|
Args:
|
|
keypoints (ndarray): keypoints, [N, 17, 3].
|
|
M (ndarray): affine matrix.
|
|
|
|
Returns:
|
|
new_keypoints (ndarray): keypoints after affine, [N, 17, 3].
|
|
"""
|
|
n, nkpt = keypoints.shape[:2]
|
|
if n == 0:
|
|
return keypoints
|
|
xy = np.ones((n * nkpt, 3), dtype=keypoints.dtype)
|
|
visible = keypoints[..., 2].reshape(n * nkpt, 1)
|
|
xy[:, :2] = keypoints[..., :2].reshape(n * nkpt, 2)
|
|
xy = xy @ M.T # transform
|
|
xy = xy[:, :2] / xy[:, 2:3] # perspective rescale or affine
|
|
out_mask = (xy[:, 0] < 0) | (xy[:, 1] < 0) | (xy[:, 0] > self.size[0]) | (xy[:, 1] > self.size[1])
|
|
visible[out_mask] = 0
|
|
return np.concatenate([xy, visible], axis=-1).reshape(n, nkpt, 3)
|
|
|
|
def __call__(self, labels):
|
|
"""
|
|
Affine images and targets.
|
|
|
|
Args:
|
|
labels (dict): a dict of `bboxes`, `segments`, `keypoints`.
|
|
"""
|
|
if self.pre_transform and 'mosaic_border' not in labels:
|
|
labels = self.pre_transform(labels)
|
|
labels.pop('ratio_pad', None) # do not need ratio pad
|
|
|
|
img = labels['img']
|
|
cls = labels['cls']
|
|
instances = labels.pop('instances')
|
|
# Make sure the coord formats are right
|
|
instances.convert_bbox(format='xyxy')
|
|
instances.denormalize(*img.shape[:2][::-1])
|
|
|
|
border = labels.pop('mosaic_border', self.border)
|
|
self.size = img.shape[1] + border[1] * 2, img.shape[0] + border[0] * 2 # w, h
|
|
# M is affine matrix
|
|
# Scale for func:`box_candidates`
|
|
img, M, scale = self.affine_transform(img, border)
|
|
|
|
bboxes = self.apply_bboxes(instances.bboxes, M)
|
|
|
|
segments = instances.segments
|
|
keypoints = instances.keypoints
|
|
# Update bboxes if there are segments.
|
|
if len(segments):
|
|
bboxes, segments = self.apply_segments(segments, M)
|
|
|
|
if keypoints is not None:
|
|
keypoints = self.apply_keypoints(keypoints, M)
|
|
new_instances = Instances(bboxes, segments, keypoints, bbox_format='xyxy', normalized=False)
|
|
# Clip
|
|
new_instances.clip(*self.size)
|
|
|
|
# Filter instances
|
|
instances.scale(scale_w=scale, scale_h=scale, bbox_only=True)
|
|
# Make the bboxes have the same scale with new_bboxes
|
|
i = self.box_candidates(box1=instances.bboxes.T,
|
|
box2=new_instances.bboxes.T,
|
|
area_thr=0.01 if len(segments) else 0.10)
|
|
labels['instances'] = new_instances[i]
|
|
labels['cls'] = cls[i]
|
|
labels['img'] = img
|
|
labels['resized_shape'] = img.shape[:2]
|
|
return labels
|
|
|
|
def box_candidates(self, box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16):
|
|
"""
|
|
Compute box candidates based on a set of thresholds. This method compares the characteristics of the boxes
|
|
before and after augmentation to decide whether a box is a candidate for further processing.
|
|
|
|
Args:
|
|
box1 (numpy.ndarray): The 4,n bounding box before augmentation, represented as [x1, y1, x2, y2].
|
|
box2 (numpy.ndarray): The 4,n bounding box after augmentation, represented as [x1, y1, x2, y2].
|
|
wh_thr (float, optional): The width and height threshold in pixels. Default is 2.
|
|
ar_thr (float, optional): The aspect ratio threshold. Default is 100.
|
|
area_thr (float, optional): The area ratio threshold. Default is 0.1.
|
|
eps (float, optional): A small epsilon value to prevent division by zero. Default is 1e-16.
|
|
|
|
Returns:
|
|
(numpy.ndarray): A boolean array indicating which boxes are candidates based on the given thresholds.
|
|
"""
|
|
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
|
|
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
|
|
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
|
|
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
|
|
|
|
|
|
class RandomHSV:
|
|
"""
|
|
This class is responsible for performing random adjustments to the Hue, Saturation, and Value (HSV) channels of an
|
|
image.
|
|
|
|
The adjustments are random but within limits set by hgain, sgain, and vgain.
|
|
"""
|
|
|
|
def __init__(self, hgain=0.5, sgain=0.5, vgain=0.5) -> None:
|
|
"""
|
|
Initialize RandomHSV class with gains for each HSV channel.
|
|
|
|
Args:
|
|
hgain (float, optional): Maximum variation for hue. Default is 0.5.
|
|
sgain (float, optional): Maximum variation for saturation. Default is 0.5.
|
|
vgain (float, optional): Maximum variation for value. Default is 0.5.
|
|
"""
|
|
self.hgain = hgain
|
|
self.sgain = sgain
|
|
self.vgain = vgain
|
|
|
|
def __call__(self, labels):
|
|
"""
|
|
Applies random HSV augmentation to an image within the predefined limits.
|
|
|
|
The modified image replaces the original image in the input 'labels' dict.
|
|
"""
|
|
img = labels['img']
|
|
if self.hgain or self.sgain or self.vgain:
|
|
r = np.random.uniform(-1, 1, 3) * [self.hgain, self.sgain, self.vgain] + 1 # random gains
|
|
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
|
|
dtype = img.dtype # uint8
|
|
|
|
x = np.arange(0, 256, dtype=r.dtype)
|
|
lut_hue = ((x * r[0]) % 180).astype(dtype)
|
|
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
|
|
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
|
|
|
|
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
|
|
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
|
|
return labels
|
|
|
|
|
|
class RandomFlip:
|
|
"""
|
|
Applies a random horizontal or vertical flip to an image with a given probability.
|
|
|
|
Also updates any instances (bounding boxes, keypoints, etc.) accordingly.
|
|
"""
|
|
|
|
def __init__(self, p=0.5, direction='horizontal', flip_idx=None) -> None:
|
|
"""
|
|
Initializes the RandomFlip class with probability and direction.
|
|
|
|
Args:
|
|
p (float, optional): The probability of applying the flip. Must be between 0 and 1. Default is 0.5.
|
|
direction (str, optional): The direction to apply the flip. Must be 'horizontal' or 'vertical'.
|
|
Default is 'horizontal'.
|
|
flip_idx (array-like, optional): Index mapping for flipping keypoints, if any.
|
|
"""
|
|
assert direction in ['horizontal', 'vertical'], f'Support direction `horizontal` or `vertical`, got {direction}'
|
|
assert 0 <= p <= 1.0
|
|
|
|
self.p = p
|
|
self.direction = direction
|
|
self.flip_idx = flip_idx
|
|
|
|
def __call__(self, labels):
|
|
"""
|
|
Applies random flip to an image and updates any instances like bounding boxes or keypoints accordingly.
|
|
|
|
Args:
|
|
labels (dict): A dictionary containing the keys 'img' and 'instances'. 'img' is the image to be flipped.
|
|
'instances' is an object containing bounding boxes and optionally keypoints.
|
|
|
|
Returns:
|
|
(dict): The same dict with the flipped image and updated instances under the 'img' and 'instances' keys.
|
|
"""
|
|
img = labels['img']
|
|
instances = labels.pop('instances')
|
|
instances.convert_bbox(format='xywh')
|
|
h, w = img.shape[:2]
|
|
h = 1 if instances.normalized else h
|
|
w = 1 if instances.normalized else w
|
|
|
|
# Flip up-down
|
|
if self.direction == 'vertical' and random.random() < self.p:
|
|
img = np.flipud(img)
|
|
instances.flipud(h)
|
|
if self.direction == 'horizontal' and random.random() < self.p:
|
|
img = np.fliplr(img)
|
|
instances.fliplr(w)
|
|
# For keypoints
|
|
if self.flip_idx is not None and instances.keypoints is not None:
|
|
instances.keypoints = np.ascontiguousarray(instances.keypoints[:, self.flip_idx, :])
|
|
labels['img'] = np.ascontiguousarray(img)
|
|
labels['instances'] = instances
|
|
return labels
|
|
|
|
|
|
class LetterBox:
|
|
"""Resize image and padding for detection, instance segmentation, pose."""
|
|
|
|
def __init__(self, new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, center=True, stride=32):
|
|
"""Initialize LetterBox object with specific parameters."""
|
|
self.new_shape = new_shape
|
|
self.auto = auto
|
|
self.scaleFill = scaleFill
|
|
self.scaleup = scaleup
|
|
self.stride = stride
|
|
self.center = center # Put the image in the middle or top-left
|
|
|
|
def __call__(self, labels=None, image=None):
|
|
"""Return updated labels and image with added border."""
|
|
if labels is None:
|
|
labels = {}
|
|
img = labels.get('img') if image is None else image
|
|
shape = img.shape[:2] # current shape [height, width]
|
|
new_shape = labels.pop('rect_shape', self.new_shape)
|
|
if isinstance(new_shape, int):
|
|
new_shape = (new_shape, new_shape)
|
|
|
|
# Scale ratio (new / old)
|
|
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
|
if not self.scaleup: # only scale down, do not scale up (for better val mAP)
|
|
r = min(r, 1.0)
|
|
|
|
# Compute padding
|
|
ratio = r, r # width, height ratios
|
|
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
|
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
|
if self.auto: # minimum rectangle
|
|
dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride) # wh padding
|
|
elif self.scaleFill: # stretch
|
|
dw, dh = 0.0, 0.0
|
|
new_unpad = (new_shape[1], new_shape[0])
|
|
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
|
|
|
if self.center:
|
|
dw /= 2 # divide padding into 2 sides
|
|
dh /= 2
|
|
|
|
if shape[::-1] != new_unpad: # resize
|
|
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
|
top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1))
|
|
left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1))
|
|
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT,
|
|
value=(114, 114, 114)) # add border
|
|
if labels.get('ratio_pad'):
|
|
labels['ratio_pad'] = (labels['ratio_pad'], (left, top)) # for evaluation
|
|
|
|
if len(labels):
|
|
labels = self._update_labels(labels, ratio, dw, dh)
|
|
labels['img'] = img
|
|
labels['resized_shape'] = new_shape
|
|
return labels
|
|
else:
|
|
return img
|
|
|
|
def _update_labels(self, labels, ratio, padw, padh):
|
|
"""Update labels."""
|
|
labels['instances'].convert_bbox(format='xyxy')
|
|
labels['instances'].denormalize(*labels['img'].shape[:2][::-1])
|
|
labels['instances'].scale(*ratio)
|
|
labels['instances'].add_padding(padw, padh)
|
|
return labels
|
|
|
|
|
|
class CopyPaste:
|
|
"""
|
|
Implements the Copy-Paste augmentation as described in the paper https://arxiv.org/abs/2012.07177. This class is
|
|
responsible for applying the Copy-Paste augmentation on images and their corresponding instances.
|
|
"""
|
|
|
|
def __init__(self, p=0.5) -> None:
|
|
"""
|
|
Initializes the CopyPaste class with a given probability.
|
|
|
|
Args:
|
|
p (float, optional): The probability of applying the Copy-Paste augmentation. Must be between 0 and 1.
|
|
Default is 0.5.
|
|
"""
|
|
self.p = p
|
|
|
|
def __call__(self, labels):
|
|
"""
|
|
Applies the Copy-Paste augmentation to the given image and instances.
|
|
|
|
Args:
|
|
labels (dict): A dictionary containing:
|
|
- 'img': The image to augment.
|
|
- 'cls': Class labels associated with the instances.
|
|
- 'instances': Object containing bounding boxes, and optionally, keypoints and segments.
|
|
|
|
Returns:
|
|
(dict): Dict with augmented image and updated instances under the 'img', 'cls', and 'instances' keys.
|
|
|
|
Notes:
|
|
1. Instances are expected to have 'segments' as one of their attributes for this augmentation to work.
|
|
2. This method modifies the input dictionary 'labels' in place.
|
|
"""
|
|
im = labels['img']
|
|
cls = labels['cls']
|
|
h, w = im.shape[:2]
|
|
instances = labels.pop('instances')
|
|
instances.convert_bbox(format='xyxy')
|
|
instances.denormalize(w, h)
|
|
if self.p and len(instances.segments):
|
|
n = len(instances)
|
|
_, w, _ = im.shape # height, width, channels
|
|
im_new = np.zeros(im.shape, np.uint8)
|
|
|
|
# Calculate ioa first then select indexes randomly
|
|
ins_flip = deepcopy(instances)
|
|
ins_flip.fliplr(w)
|
|
|
|
ioa = bbox_ioa(ins_flip.bboxes, instances.bboxes) # intersection over area, (N, M)
|
|
indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, )
|
|
n = len(indexes)
|
|
for j in random.sample(list(indexes), k=round(self.p * n)):
|
|
cls = np.concatenate((cls, cls[[j]]), axis=0)
|
|
instances = Instances.concatenate((instances, ins_flip[[j]]), axis=0)
|
|
cv2.drawContours(im_new, instances.segments[[j]].astype(np.int32), -1, (1, 1, 1), cv2.FILLED)
|
|
|
|
result = cv2.flip(im, 1) # augment segments (flip left-right)
|
|
i = cv2.flip(im_new, 1).astype(bool)
|
|
im[i] = result[i]
|
|
|
|
labels['img'] = im
|
|
labels['cls'] = cls
|
|
labels['instances'] = instances
|
|
return labels
|
|
|
|
|
|
class Albumentations:
|
|
"""
|
|
Albumentations transformations.
|
|
|
|
Optional, uninstall package to disable. Applies Blur, Median Blur, convert to grayscale, Contrast Limited Adaptive
|
|
Histogram Equalization, random change of brightness and contrast, RandomGamma and lowering of image quality by
|
|
compression.
|
|
"""
|
|
|
|
def __init__(self, p=1.0):
|
|
"""Initialize the transform object for YOLO bbox formatted params."""
|
|
self.p = p
|
|
self.transform = None
|
|
prefix = colorstr('albumentations: ')
|
|
try:
|
|
import albumentations as A
|
|
|
|
check_version(A.__version__, '1.0.3', hard=True) # version requirement
|
|
|
|
T = [
|
|
A.Blur(p=0.01),
|
|
A.MedianBlur(p=0.01),
|
|
A.ToGray(p=0.01),
|
|
A.CLAHE(p=0.01),
|
|
A.RandomBrightnessContrast(p=0.0),
|
|
A.RandomGamma(p=0.0),
|
|
A.ImageCompression(quality_lower=75, p=0.0)] # transforms
|
|
self.transform = A.Compose(T, bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels']))
|
|
|
|
LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p))
|
|
except ImportError: # package not installed, skip
|
|
pass
|
|
except Exception as e:
|
|
LOGGER.info(f'{prefix}{e}')
|
|
|
|
def __call__(self, labels):
|
|
"""Generates object detections and returns a dictionary with detection results."""
|
|
im = labels['img']
|
|
cls = labels['cls']
|
|
if len(cls):
|
|
labels['instances'].convert_bbox('xywh')
|
|
labels['instances'].normalize(*im.shape[:2][::-1])
|
|
bboxes = labels['instances'].bboxes
|
|
# TODO: add supports of segments and keypoints
|
|
if self.transform and random.random() < self.p:
|
|
new = self.transform(image=im, bboxes=bboxes, class_labels=cls) # transformed
|
|
if len(new['class_labels']) > 0: # skip update if no bbox in new im
|
|
labels['img'] = new['image']
|
|
labels['cls'] = np.array(new['class_labels'])
|
|
bboxes = np.array(new['bboxes'], dtype=np.float32)
|
|
labels['instances'].update(bboxes=bboxes)
|
|
return labels
|
|
|
|
|
|
# TODO: technically this is not an augmentation, maybe we should put this to another files
|
|
class Format:
|
|
"""
|
|
Formats image annotations for object detection, instance segmentation, and pose estimation tasks. The class
|
|
standardizes the image and instance annotations to be used by the `collate_fn` in PyTorch DataLoader.
|
|
|
|
Attributes:
|
|
bbox_format (str): Format for bounding boxes. Default is 'xywh'.
|
|
normalize (bool): Whether to normalize bounding boxes. Default is True.
|
|
return_mask (bool): Return instance masks for segmentation. Default is False.
|
|
return_keypoint (bool): Return keypoints for pose estimation. Default is False.
|
|
mask_ratio (int): Downsample ratio for masks. Default is 4.
|
|
mask_overlap (bool): Whether to overlap masks. Default is True.
|
|
batch_idx (bool): Keep batch indexes. Default is True.
|
|
"""
|
|
|
|
def __init__(self,
|
|
bbox_format='xywh',
|
|
normalize=True,
|
|
return_mask=False,
|
|
return_keypoint=False,
|
|
mask_ratio=4,
|
|
mask_overlap=True,
|
|
batch_idx=True):
|
|
"""Initializes the Format class with given parameters."""
|
|
self.bbox_format = bbox_format
|
|
self.normalize = normalize
|
|
self.return_mask = return_mask # set False when training detection only
|
|
self.return_keypoint = return_keypoint
|
|
self.mask_ratio = mask_ratio
|
|
self.mask_overlap = mask_overlap
|
|
self.batch_idx = batch_idx # keep the batch indexes
|
|
|
|
def __call__(self, labels):
|
|
"""Return formatted image, classes, bounding boxes & keypoints to be used by 'collate_fn'."""
|
|
img = labels.pop('img')
|
|
h, w = img.shape[:2]
|
|
cls = labels.pop('cls')
|
|
instances = labels.pop('instances')
|
|
instances.convert_bbox(format=self.bbox_format)
|
|
instances.denormalize(w, h)
|
|
nl = len(instances)
|
|
|
|
if self.return_mask:
|
|
if nl:
|
|
masks, instances, cls = self._format_segments(instances, cls, w, h)
|
|
masks = torch.from_numpy(masks)
|
|
else:
|
|
masks = torch.zeros(1 if self.mask_overlap else nl, img.shape[0] // self.mask_ratio,
|
|
img.shape[1] // self.mask_ratio)
|
|
labels['masks'] = masks
|
|
if self.normalize:
|
|
instances.normalize(w, h)
|
|
labels['img'] = self._format_img(img)
|
|
labels['cls'] = torch.from_numpy(cls) if nl else torch.zeros(nl)
|
|
labels['bboxes'] = torch.from_numpy(instances.bboxes) if nl else torch.zeros((nl, 4))
|
|
if self.return_keypoint:
|
|
labels['keypoints'] = torch.from_numpy(instances.keypoints)
|
|
# Then we can use collate_fn
|
|
if self.batch_idx:
|
|
labels['batch_idx'] = torch.zeros(nl)
|
|
return labels
|
|
|
|
def _format_img(self, img):
|
|
"""Format the image for YOLO from Numpy array to PyTorch tensor."""
|
|
if len(img.shape) < 3:
|
|
img = np.expand_dims(img, -1)
|
|
img = np.ascontiguousarray(img.transpose(2, 0, 1)[::-1])
|
|
img = torch.from_numpy(img)
|
|
return img
|
|
|
|
def _format_segments(self, instances, cls, w, h):
|
|
"""Convert polygon points to bitmap."""
|
|
segments = instances.segments
|
|
if self.mask_overlap:
|
|
masks, sorted_idx = polygons2masks_overlap((h, w), segments, downsample_ratio=self.mask_ratio)
|
|
masks = masks[None] # (640, 640) -> (1, 640, 640)
|
|
instances = instances[sorted_idx]
|
|
cls = cls[sorted_idx]
|
|
else:
|
|
masks = polygons2masks((h, w), segments, color=1, downsample_ratio=self.mask_ratio)
|
|
|
|
return masks, instances, cls
|
|
|
|
|
|
def v8_transforms(dataset, imgsz, hyp, stretch=False):
|
|
"""Convert images to a size suitable for YOLOv8 training."""
|
|
pre_transform = Compose([
|
|
Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic),
|
|
CopyPaste(p=hyp.copy_paste),
|
|
RandomPerspective(
|
|
degrees=hyp.degrees,
|
|
translate=hyp.translate,
|
|
scale=hyp.scale,
|
|
shear=hyp.shear,
|
|
perspective=hyp.perspective,
|
|
pre_transform=None if stretch else LetterBox(new_shape=(imgsz, imgsz)),
|
|
)])
|
|
flip_idx = dataset.data.get('flip_idx', []) # for keypoints augmentation
|
|
if dataset.use_keypoints:
|
|
kpt_shape = dataset.data.get('kpt_shape', None)
|
|
if len(flip_idx) == 0 and hyp.fliplr > 0.0:
|
|
hyp.fliplr = 0.0
|
|
LOGGER.warning("WARNING ⚠️ No 'flip_idx' array defined in data.yaml, setting augmentation 'fliplr=0.0'")
|
|
elif flip_idx and (len(flip_idx) != kpt_shape[0]):
|
|
raise ValueError(f'data.yaml flip_idx={flip_idx} length must be equal to kpt_shape[0]={kpt_shape[0]}')
|
|
|
|
return Compose([
|
|
pre_transform,
|
|
MixUp(dataset, pre_transform=pre_transform, p=hyp.mixup),
|
|
Albumentations(p=1.0),
|
|
RandomHSV(hgain=hyp.hsv_h, sgain=hyp.hsv_s, vgain=hyp.hsv_v),
|
|
RandomFlip(direction='vertical', p=hyp.flipud),
|
|
RandomFlip(direction='horizontal', p=hyp.fliplr, flip_idx=flip_idx)]) # transforms
|
|
|
|
|
|
# Classification augmentations -----------------------------------------------------------------------------------------
|
|
def classify_transforms(size=224, rect=False, mean=(0.0, 0.0, 0.0), std=(1.0, 1.0, 1.0)): # IMAGENET_MEAN, IMAGENET_STD
|
|
"""Transforms to apply if albumentations not installed."""
|
|
if not isinstance(size, int):
|
|
raise TypeError(f'classify_transforms() size {size} must be integer, not (list, tuple)')
|
|
transforms = [ClassifyLetterBox(size, auto=True) if rect else CenterCrop(size), ToTensor()]
|
|
if any(mean) or any(std):
|
|
transforms.append(T.Normalize(mean, std, inplace=True))
|
|
return T.Compose(transforms)
|
|
|
|
|
|
def hsv2colorjitter(h, s, v):
|
|
"""Map HSV (hue, saturation, value) jitter into ColorJitter values (brightness, contrast, saturation, hue)"""
|
|
return v, v, s, h
|
|
|
|
|
|
def classify_albumentations(
|
|
augment=True,
|
|
size=224,
|
|
scale=(0.08, 1.0),
|
|
hflip=0.5,
|
|
vflip=0.0,
|
|
hsv_h=0.015, # image HSV-Hue augmentation (fraction)
|
|
hsv_s=0.7, # image HSV-Saturation augmentation (fraction)
|
|
hsv_v=0.4, # image HSV-Value augmentation (fraction)
|
|
mean=(0.0, 0.0, 0.0), # IMAGENET_MEAN
|
|
std=(1.0, 1.0, 1.0), # IMAGENET_STD
|
|
auto_aug=False,
|
|
):
|
|
"""YOLOv8 classification Albumentations (optional, only used if package is installed)."""
|
|
prefix = colorstr('albumentations: ')
|
|
try:
|
|
import albumentations as A
|
|
from albumentations.pytorch import ToTensorV2
|
|
|
|
check_version(A.__version__, '1.0.3', hard=True) # version requirement
|
|
if augment: # Resize and crop
|
|
T = [A.RandomResizedCrop(height=size, width=size, scale=scale)]
|
|
if auto_aug:
|
|
# TODO: implement AugMix, AutoAug & RandAug in albumentations
|
|
LOGGER.info(f'{prefix}auto augmentations are currently not supported')
|
|
else:
|
|
if hflip > 0:
|
|
T += [A.HorizontalFlip(p=hflip)]
|
|
if vflip > 0:
|
|
T += [A.VerticalFlip(p=vflip)]
|
|
if any((hsv_h, hsv_s, hsv_v)):
|
|
T += [A.ColorJitter(*hsv2colorjitter(hsv_h, hsv_s, hsv_v))] # brightness, contrast, saturation, hue
|
|
else: # Use fixed crop for eval set (reproducibility)
|
|
T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)]
|
|
T += [A.Normalize(mean=mean, std=std), ToTensorV2()] # Normalize and convert to Tensor
|
|
LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p))
|
|
return A.Compose(T)
|
|
|
|
except ImportError: # package not installed, skip
|
|
pass
|
|
except Exception as e:
|
|
LOGGER.info(f'{prefix}{e}')
|
|
|
|
|
|
class ClassifyLetterBox:
|
|
"""
|
|
YOLOv8 LetterBox class for image preprocessing, designed to be part of a transformation pipeline, e.g.,
|
|
T.Compose([LetterBox(size), ToTensor()]).
|
|
|
|
Attributes:
|
|
h (int): Target height of the image.
|
|
w (int): Target width of the image.
|
|
auto (bool): If True, automatically solves for short side using stride.
|
|
stride (int): The stride value, used when 'auto' is True.
|
|
"""
|
|
|
|
def __init__(self, size=(640, 640), auto=False, stride=32):
|
|
"""
|
|
Initializes the ClassifyLetterBox class with a target size, auto-flag, and stride.
|
|
|
|
Args:
|
|
size (Union[int, Tuple[int, int]]): The target dimensions (height, width) for the letterbox.
|
|
auto (bool): If True, automatically calculates the short side based on stride.
|
|
stride (int): The stride value, used when 'auto' is True.
|
|
"""
|
|
super().__init__()
|
|
self.h, self.w = (size, size) if isinstance(size, int) else size
|
|
self.auto = auto # pass max size integer, automatically solve for short side using stride
|
|
self.stride = stride # used with auto
|
|
|
|
def __call__(self, im):
|
|
"""
|
|
Resizes the image and pads it with a letterbox method.
|
|
|
|
Args:
|
|
im (numpy.ndarray): The input image as a numpy array of shape HWC.
|
|
|
|
Returns:
|
|
(numpy.ndarray): The letterboxed and resized image as a numpy array.
|
|
"""
|
|
imh, imw = im.shape[:2]
|
|
r = min(self.h / imh, self.w / imw) # ratio of new/old dimensions
|
|
h, w = round(imh * r), round(imw * r) # resized image dimensions
|
|
|
|
# Calculate padding dimensions
|
|
hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else (self.h, self.w)
|
|
top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1)
|
|
|
|
# Create padded image
|
|
im_out = np.full((hs, ws, 3), 114, dtype=im.dtype)
|
|
im_out[top:top + h, left:left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
|
|
return im_out
|
|
|
|
|
|
class CenterCrop:
|
|
"""YOLOv8 CenterCrop class for image preprocessing, designed to be part of a transformation pipeline, e.g.,
|
|
T.Compose([CenterCrop(size), ToTensor()]).
|
|
"""
|
|
|
|
def __init__(self, size=640):
|
|
"""Converts an image from numpy array to PyTorch tensor."""
|
|
super().__init__()
|
|
self.h, self.w = (size, size) if isinstance(size, int) else size
|
|
|
|
def __call__(self, im):
|
|
"""
|
|
Resizes and crops the center of the image using a letterbox method.
|
|
|
|
Args:
|
|
im (numpy.ndarray): The input image as a numpy array of shape HWC.
|
|
|
|
Returns:
|
|
(numpy.ndarray): The center-cropped and resized image as a numpy array.
|
|
"""
|
|
imh, imw = im.shape[:2]
|
|
m = min(imh, imw) # min dimension
|
|
top, left = (imh - m) // 2, (imw - m) // 2
|
|
return cv2.resize(im[top:top + m, left:left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR)
|
|
|
|
|
|
class ToTensor:
|
|
"""YOLOv8 ToTensor class for image preprocessing, i.e., T.Compose([LetterBox(size), ToTensor()])."""
|
|
|
|
def __init__(self, half=False):
|
|
"""Initialize YOLOv8 ToTensor object with optional half-precision support."""
|
|
super().__init__()
|
|
self.half = half
|
|
|
|
def __call__(self, im):
|
|
"""
|
|
Transforms an image from a numpy array to a PyTorch tensor, applying optional half-precision and normalization.
|
|
|
|
Args:
|
|
im (numpy.ndarray): Input image as a numpy array with shape (H, W, C) in BGR order.
|
|
|
|
Returns:
|
|
(torch.Tensor): The transformed image as a PyTorch tensor in float32 or float16, normalized to [0, 1].
|
|
"""
|
|
im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous
|
|
im = torch.from_numpy(im) # to torch
|
|
im = im.half() if self.half else im.float() # uint8 to fp16/32
|
|
im /= 255.0 # 0-255 to 0.0-1.0
|
|
return im
|