Sleeping-post-detection-fir.../ultralytics/engine/model.py

431 lines
19 KiB
Python

# Ultralytics YOLO 🚀, AGPL-3.0 license
import inspect
import sys
from pathlib import Path
from typing import Union
from ultralytics.cfg import TASK2DATA, get_cfg, get_save_dir
from ultralytics.hub.utils import HUB_WEB_ROOT
from ultralytics.nn.tasks import attempt_load_one_weight, guess_model_task, nn, yaml_model_load
from ultralytics.utils import ASSETS, DEFAULT_CFG_DICT, LOGGER, RANK, callbacks, checks, emojis, yaml_load
class Model(nn.Module):
"""
A base class to unify APIs for all models.
Args:
model (str, Path): Path to the model file to load or create.
task (Any, optional): Task type for the YOLO model. Defaults to None.
Attributes:
predictor (Any): The predictor object.
model (Any): The model object.
trainer (Any): The trainer object.
task (str): The type of model task.
ckpt (Any): The checkpoint object if the model loaded from *.pt file.
cfg (str): The model configuration if loaded from *.yaml file.
ckpt_path (str): The checkpoint file path.
overrides (dict): Overrides for the trainer object.
metrics (Any): The data for metrics.
Methods:
__call__(source=None, stream=False, **kwargs):
Alias for the predict method.
_new(cfg:str, verbose:bool=True) -> None:
Initializes a new model and infers the task type from the model definitions.
_load(weights:str, task:str='') -> None:
Initializes a new model and infers the task type from the model head.
_check_is_pytorch_model() -> None:
Raises TypeError if the model is not a PyTorch model.
reset() -> None:
Resets the model modules.
info(verbose:bool=False) -> None:
Logs the model info.
fuse() -> None:
Fuses the model for faster inference.
predict(source=None, stream=False, **kwargs) -> List[ultralytics.engine.results.Results]:
Performs prediction using the YOLO model.
Returns:
list(ultralytics.engine.results.Results): The prediction results.
"""
def __init__(self, model: Union[str, Path] = 'yolov8n.pt', task=None) -> None:
"""
Initializes the YOLO model.
Args:
model (Union[str, Path], optional): Path or name of the model to load or create. Defaults to 'yolov8n.pt'.
task (Any, optional): Task type for the YOLO model. Defaults to None.
"""
super().__init__()
self.callbacks = callbacks.get_default_callbacks()
self.predictor = None # reuse predictor
self.model = None # model object
self.trainer = None # trainer object
self.ckpt = None # if loaded from *.pt
self.cfg = None # if loaded from *.yaml
self.ckpt_path = None
self.overrides = {} # overrides for trainer object
self.metrics = None # validation/training metrics
self.session = None # HUB session
self.task = task # task type
model = str(model).strip() # strip spaces
# Check if Ultralytics HUB model from https://hub.ultralytics.com
if self.is_hub_model(model):
from ultralytics.hub.session import HUBTrainingSession
self.session = HUBTrainingSession(model)
model = self.session.model_file
# Check if Triton Server model
elif self.is_triton_model(model):
self.model = model
self.task = task
return
# Load or create new YOLO model
model = checks.check_model_file_from_stem(model) # add suffix, i.e. yolov8n -> yolov8n.pt
if Path(model).suffix in ('.yaml', '.yml'):
self._new(model, task)
else:
self._load(model, task)
def __call__(self, source=None, stream=False, **kwargs):
"""Calls the 'predict' function with given arguments to perform object detection."""
return self.predict(source, stream, **kwargs)
@staticmethod
def is_triton_model(model):
"""Is model a Triton Server URL string, i.e. <scheme>://<netloc>/<endpoint>/<task_name>"""
from urllib.parse import urlsplit
url = urlsplit(model)
return url.netloc and url.path and url.scheme in {'http', 'grpc'}
@staticmethod
def is_hub_model(model):
"""Check if the provided model is a HUB model."""
return any((
model.startswith(f'{HUB_WEB_ROOT}/models/'), # i.e. https://hub.ultralytics.com/models/MODEL_ID
[len(x) for x in model.split('_')] == [42, 20], # APIKEY_MODELID
len(model) == 20 and not Path(model).exists() and all(x not in model for x in './\\'))) # MODELID
def _new(self, cfg: str, task=None, model=None, verbose=True):
"""
Initializes a new model and infers the task type from the model definitions.
Args:
cfg (str): model configuration file
task (str | None): model task
model (BaseModel): Customized model.
verbose (bool): display model info on load
"""
cfg_dict = yaml_model_load(cfg)
self.cfg = cfg
self.task = task or guess_model_task(cfg_dict)
self.model = (model or self._smart_load('model'))(cfg_dict, verbose=verbose and RANK == -1) # build model
self.overrides['model'] = self.cfg
self.overrides['task'] = self.task
# Below added to allow export from YAMLs
self.model.args = {**DEFAULT_CFG_DICT, **self.overrides} # combine default and model args (prefer model args)
self.model.task = self.task
def _load(self, weights: str, task=None):
"""
Initializes a new model and infers the task type from the model head.
Args:
weights (str): model checkpoint to be loaded
task (str | None): model task
"""
suffix = Path(weights).suffix
if suffix == '.pt':
self.model, self.ckpt = attempt_load_one_weight(weights)
self.task = self.model.args['task']
self.overrides = self.model.args = self._reset_ckpt_args(self.model.args)
self.ckpt_path = self.model.pt_path
else:
weights = checks.check_file(weights)
self.model, self.ckpt = weights, None
self.task = task or guess_model_task(weights)
self.ckpt_path = weights
self.overrides['model'] = weights
self.overrides['task'] = self.task
def _check_is_pytorch_model(self):
"""Raises TypeError is model is not a PyTorch model."""
pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == '.pt'
pt_module = isinstance(self.model, nn.Module)
if not (pt_module or pt_str):
raise TypeError(
f"model='{self.model}' should be a *.pt PyTorch model to run this method, but is a different format. "
f"PyTorch models can train, val, predict and export, i.e. 'model.train(data=...)', but exported "
f"formats like ONNX, TensorRT etc. only support 'predict' and 'val' modes, "
f"i.e. 'yolo predict model=yolov8n.onnx'.\nTo run CUDA or MPS inference please pass the device "
f"argument directly in your inference command, i.e. 'model.predict(source=..., device=0)'")
def reset_weights(self):
"""Resets the model modules parameters to randomly initialized values, losing all training information."""
self._check_is_pytorch_model()
for m in self.model.modules():
if hasattr(m, 'reset_parameters'):
m.reset_parameters()
for p in self.model.parameters():
p.requires_grad = True
return self
def load(self, weights='yolov8n.pt'):
"""Transfers parameters with matching names and shapes from 'weights' to model."""
self._check_is_pytorch_model()
if isinstance(weights, (str, Path)):
weights, self.ckpt = attempt_load_one_weight(weights)
self.model.load(weights)
return self
def info(self, detailed=False, verbose=True):
"""
Logs model info.
Args:
detailed (bool): Show detailed information about model.
verbose (bool): Controls verbosity.
"""
self._check_is_pytorch_model()
return self.model.info(detailed=detailed, verbose=verbose)
def fuse(self):
"""Fuse PyTorch Conv2d and BatchNorm2d layers."""
self._check_is_pytorch_model()
self.model.fuse()
def predict(self, source=None, stream=False, predictor=None, **kwargs):
"""
Perform prediction using the YOLO model.
Args:
source (str | int | PIL | np.ndarray): The source of the image to make predictions on.
Accepts all source types accepted by the YOLO model.
stream (bool): Whether to stream the predictions or not. Defaults to False.
predictor (BasePredictor): Customized predictor.
**kwargs : Additional keyword arguments passed to the predictor.
Check the 'configuration' section in the documentation for all available options.
Returns:
(List[ultralytics.engine.results.Results]): The prediction results.
"""
if source is None:
source = ASSETS
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.")
is_cli = (sys.argv[0].endswith('yolo') or sys.argv[0].endswith('ultralytics')) and any(
x in sys.argv for x in ('predict', 'track', 'mode=predict', 'mode=track'))
custom = {'conf': 0.25, 'save': is_cli} # method defaults
args = {**self.overrides, **custom, **kwargs, 'mode': 'predict'} # highest priority args on the right
prompts = args.pop('prompts', None) # for SAM-type models
if not self.predictor:
self.predictor = (predictor or self._smart_load('predictor'))(overrides=args, _callbacks=self.callbacks)
self.predictor.setup_model(model=self.model, verbose=is_cli)
else: # only update args if predictor is already setup
self.predictor.args = get_cfg(self.predictor.args, args)
if 'project' in args or 'name' in args:
self.predictor.save_dir = get_save_dir(self.predictor.args)
if prompts and hasattr(self.predictor, 'set_prompts'): # for SAM-type models
self.predictor.set_prompts(prompts)
return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream)
def track(self, source=None, stream=False, persist=False, **kwargs):
"""
Perform object tracking on the input source using the registered trackers.
Args:
source (str, optional): The input source for object tracking. Can be a file path or a video stream.
stream (bool, optional): Whether the input source is a video stream. Defaults to False.
persist (bool, optional): Whether to persist the trackers if they already exist. Defaults to False.
**kwargs (optional): Additional keyword arguments for the tracking process.
Returns:
(List[ultralytics.engine.results.Results]): The tracking results.
"""
if not hasattr(self.predictor, 'trackers'):
from ultralytics.trackers import register_tracker
register_tracker(self, persist)
kwargs['conf'] = kwargs.get('conf') or 0.1 # ByteTrack-based method needs low confidence predictions as input
kwargs['mode'] = 'track'
return self.predict(source=source, stream=stream, **kwargs)
def val(self, validator=None, **kwargs):
"""
Validate a model on a given dataset.
Args:
validator (BaseValidator): Customized validator.
**kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs
"""
custom = {'rect': True} # method defaults
args = {**self.overrides, **custom, **kwargs, 'mode': 'val'} # highest priority args on the right
validator = (validator or self._smart_load('validator'))(args=args, _callbacks=self.callbacks)
validator(model=self.model)
self.metrics = validator.metrics
return validator.metrics
def benchmark(self, **kwargs):
"""
Benchmark a model on all export formats.
Args:
**kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs
"""
self._check_is_pytorch_model()
from ultralytics.utils.benchmarks import benchmark
custom = {'verbose': False} # method defaults
args = {**DEFAULT_CFG_DICT, **self.model.args, **custom, **kwargs, 'mode': 'benchmark'}
return benchmark(
model=self,
data=kwargs.get('data'), # if no 'data' argument passed set data=None for default datasets
imgsz=args['imgsz'],
half=args['half'],
int8=args['int8'],
device=args['device'],
verbose=kwargs.get('verbose'))
def export(self, **kwargs):
"""
Export model.
Args:
**kwargs : Any other args accepted by the Exporter. To see all args check 'configuration' section in docs.
"""
self._check_is_pytorch_model()
from .exporter import Exporter
custom = {'imgsz': self.model.args['imgsz'], 'batch': 1, 'data': None, 'verbose': False} # method defaults
args = {**self.overrides, **custom, **kwargs, 'mode': 'export'} # highest priority args on the right
return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model)
def train(self, trainer=None, **kwargs):
"""
Trains the model on a given dataset.
Args:
trainer (BaseTrainer, optional): Customized trainer.
**kwargs (Any): Any number of arguments representing the training configuration.
"""
self._check_is_pytorch_model()
if self.session: # Ultralytics HUB session
if any(kwargs):
LOGGER.warning('WARNING ⚠️ using HUB training arguments, ignoring local training arguments.')
kwargs = self.session.train_args
checks.check_pip_update_available()
overrides = yaml_load(checks.check_yaml(kwargs['cfg'])) if kwargs.get('cfg') else self.overrides
custom = {'data': TASK2DATA[self.task]} # method defaults
args = {**overrides, **custom, **kwargs, 'mode': 'train'} # highest priority args on the right
if args.get('resume'):
args['resume'] = self.ckpt_path
self.trainer = (trainer or self._smart_load('trainer'))(overrides=args, _callbacks=self.callbacks)
if not args.get('resume'): # manually set model only if not resuming
self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml)
self.model = self.trainer.model
self.trainer.hub_session = self.session # attach optional HUB session
self.trainer.train()
# Update model and cfg after training
if RANK in (-1, 0):
ckpt = self.trainer.best if self.trainer.best.exists() else self.trainer.last
self.model, _ = attempt_load_one_weight(ckpt)
self.overrides = self.model.args
self.metrics = getattr(self.trainer.validator, 'metrics', None) # TODO: no metrics returned by DDP
return self.metrics
def tune(self, use_ray=False, iterations=10, *args, **kwargs):
"""
Runs hyperparameter tuning, optionally using Ray Tune. See ultralytics.utils.tuner.run_ray_tune for Args.
Returns:
(dict): A dictionary containing the results of the hyperparameter search.
"""
self._check_is_pytorch_model()
if use_ray:
from ultralytics.utils.tuner import run_ray_tune
return run_ray_tune(self, max_samples=iterations, *args, **kwargs)
else:
from .tuner import Tuner
custom = {} # method defaults
args = {**self.overrides, **custom, **kwargs, 'mode': 'train'} # highest priority args on the right
return Tuner(args=args, _callbacks=self.callbacks)(model=self, iterations=iterations)
def _apply(self, fn):
"""Apply to(), cpu(), cuda(), half(), float() to model tensors that are not parameters or registered buffers."""
self._check_is_pytorch_model()
self = super()._apply(fn) # noqa
self.predictor = None # reset predictor as device may have changed
self.overrides['device'] = self.device # was str(self.device) i.e. device(type='cuda', index=0) -> 'cuda:0'
return self
@property
def names(self):
"""Returns class names of the loaded model."""
return self.model.names if hasattr(self.model, 'names') else None
@property
def device(self):
"""Returns device if PyTorch model."""
return next(self.model.parameters()).device if isinstance(self.model, nn.Module) else None
@property
def transforms(self):
"""Returns transform of the loaded model."""
return self.model.transforms if hasattr(self.model, 'transforms') else None
def add_callback(self, event: str, func):
"""Add a callback."""
self.callbacks[event].append(func)
def clear_callback(self, event: str):
"""Clear all event callbacks."""
self.callbacks[event] = []
def reset_callbacks(self):
"""Reset all registered callbacks."""
for event in callbacks.default_callbacks.keys():
self.callbacks[event] = [callbacks.default_callbacks[event][0]]
@staticmethod
def _reset_ckpt_args(args):
"""Reset arguments when loading a PyTorch model."""
include = {'imgsz', 'data', 'task', 'single_cls'} # only remember these arguments when loading a PyTorch model
return {k: v for k, v in args.items() if k in include}
# def __getattr__(self, attr):
# """Raises error if object has no requested attribute."""
# name = self.__class__.__name__
# raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
def _smart_load(self, key):
"""Load model/trainer/validator/predictor."""
try:
return self.task_map[self.task][key]
except Exception as e:
name = self.__class__.__name__
mode = inspect.stack()[1][3] # get the function name.
raise NotImplementedError(
emojis(f"WARNING ⚠️ '{name}' model does not support '{mode}' mode for '{self.task}' task yet.")) from e
@property
def task_map(self):
"""
Map head to model, trainer, validator, and predictor classes.
Returns:
task_map (dict): The map of model task to mode classes.
"""
raise NotImplementedError('Please provide task map for your model!')