68 lines
2.1 KiB
Python
68 lines
2.1 KiB
Python
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
import torch
|
|
|
|
|
|
def adjust_bboxes_to_image_border(boxes, image_shape, threshold=20):
|
|
"""
|
|
Adjust bounding boxes to stick to image border if they are within a certain threshold.
|
|
|
|
Args:
|
|
boxes (torch.Tensor): (n, 4)
|
|
image_shape (tuple): (height, width)
|
|
threshold (int): pixel threshold
|
|
|
|
Returns:
|
|
adjusted_boxes (torch.Tensor): adjusted bounding boxes
|
|
"""
|
|
|
|
# Image dimensions
|
|
h, w = image_shape
|
|
|
|
# Adjust boxes
|
|
boxes[boxes[:, 0] < threshold, 0] = 0 # x1
|
|
boxes[boxes[:, 1] < threshold, 1] = 0 # y1
|
|
boxes[boxes[:, 2] > w - threshold, 2] = w # x2
|
|
boxes[boxes[:, 3] > h - threshold, 3] = h # y2
|
|
return boxes
|
|
|
|
|
|
def bbox_iou(box1, boxes, iou_thres=0.9, image_shape=(640, 640), raw_output=False):
|
|
"""
|
|
Compute the Intersection-Over-Union of a bounding box with respect to an array of other bounding boxes.
|
|
|
|
Args:
|
|
box1 (torch.Tensor): (4, )
|
|
boxes (torch.Tensor): (n, 4)
|
|
iou_thres (float): IoU threshold
|
|
image_shape (tuple): (height, width)
|
|
raw_output (bool): If True, return the raw IoU values instead of the indices
|
|
|
|
Returns:
|
|
high_iou_indices (torch.Tensor): Indices of boxes with IoU > thres
|
|
"""
|
|
boxes = adjust_bboxes_to_image_border(boxes, image_shape)
|
|
# Obtain coordinates for intersections
|
|
x1 = torch.max(box1[0], boxes[:, 0])
|
|
y1 = torch.max(box1[1], boxes[:, 1])
|
|
x2 = torch.min(box1[2], boxes[:, 2])
|
|
y2 = torch.min(box1[3], boxes[:, 3])
|
|
|
|
# Compute the area of intersection
|
|
intersection = (x2 - x1).clamp(0) * (y2 - y1).clamp(0)
|
|
|
|
# Compute the area of both individual boxes
|
|
box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
|
|
box2_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
|
|
|
|
# Compute the area of union
|
|
union = box1_area + box2_area - intersection
|
|
|
|
# Compute the IoU
|
|
iou = intersection / union # Should be shape (n, )
|
|
if raw_output:
|
|
return 0 if iou.numel() == 0 else iou
|
|
|
|
# return indices of boxes with IoU > thres
|
|
return torch.nonzero(iou > iou_thres).flatten()
|