410 lines
18 KiB
Python
410 lines
18 KiB
Python
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
"""Transformer modules."""
|
|
|
|
import math
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch.nn.init import constant_, xavier_uniform_
|
|
|
|
from .conv import Conv
|
|
from .utils import _get_clones, inverse_sigmoid, multi_scale_deformable_attn_pytorch
|
|
|
|
__all__ = ('TransformerEncoderLayer', 'TransformerLayer', 'TransformerBlock', 'MLPBlock', 'LayerNorm2d', 'AIFI',
|
|
'DeformableTransformerDecoder', 'DeformableTransformerDecoderLayer', 'MSDeformAttn', 'MLP')
|
|
|
|
|
|
class TransformerEncoderLayer(nn.Module):
|
|
"""Defines a single layer of the transformer encoder."""
|
|
|
|
def __init__(self, c1, cm=2048, num_heads=8, dropout=0.0, act=nn.GELU(), normalize_before=False):
|
|
"""Initialize the TransformerEncoderLayer with specified parameters."""
|
|
super().__init__()
|
|
from ...utils.torch_utils import TORCH_1_9
|
|
if not TORCH_1_9:
|
|
raise ModuleNotFoundError(
|
|
'TransformerEncoderLayer() requires torch>=1.9 to use nn.MultiheadAttention(batch_first=True).')
|
|
self.ma = nn.MultiheadAttention(c1, num_heads, dropout=dropout, batch_first=True)
|
|
# Implementation of Feedforward model
|
|
self.fc1 = nn.Linear(c1, cm)
|
|
self.fc2 = nn.Linear(cm, c1)
|
|
|
|
self.norm1 = nn.LayerNorm(c1)
|
|
self.norm2 = nn.LayerNorm(c1)
|
|
self.dropout = nn.Dropout(dropout)
|
|
self.dropout1 = nn.Dropout(dropout)
|
|
self.dropout2 = nn.Dropout(dropout)
|
|
|
|
self.act = act
|
|
self.normalize_before = normalize_before
|
|
|
|
@staticmethod
|
|
def with_pos_embed(tensor, pos=None):
|
|
"""Add position embeddings to the tensor if provided."""
|
|
return tensor if pos is None else tensor + pos
|
|
|
|
def forward_post(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
|
|
"""Performs forward pass with post-normalization."""
|
|
q = k = self.with_pos_embed(src, pos)
|
|
src2 = self.ma(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
|
|
src = src + self.dropout1(src2)
|
|
src = self.norm1(src)
|
|
src2 = self.fc2(self.dropout(self.act(self.fc1(src))))
|
|
src = src + self.dropout2(src2)
|
|
return self.norm2(src)
|
|
|
|
def forward_pre(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
|
|
"""Performs forward pass with pre-normalization."""
|
|
src2 = self.norm1(src)
|
|
q = k = self.with_pos_embed(src2, pos)
|
|
src2 = self.ma(q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
|
|
src = src + self.dropout1(src2)
|
|
src2 = self.norm2(src)
|
|
src2 = self.fc2(self.dropout(self.act(self.fc1(src2))))
|
|
return src + self.dropout2(src2)
|
|
|
|
def forward(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
|
|
"""Forward propagates the input through the encoder module."""
|
|
if self.normalize_before:
|
|
return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
|
|
return self.forward_post(src, src_mask, src_key_padding_mask, pos)
|
|
|
|
|
|
class AIFI(TransformerEncoderLayer):
|
|
"""Defines the AIFI transformer layer."""
|
|
|
|
def __init__(self, c1, cm=2048, num_heads=8, dropout=0, act=nn.GELU(), normalize_before=False):
|
|
"""Initialize the AIFI instance with specified parameters."""
|
|
super().__init__(c1, cm, num_heads, dropout, act, normalize_before)
|
|
|
|
def forward(self, x):
|
|
"""Forward pass for the AIFI transformer layer."""
|
|
c, h, w = x.shape[1:]
|
|
pos_embed = self.build_2d_sincos_position_embedding(w, h, c)
|
|
# Flatten [B, C, H, W] to [B, HxW, C]
|
|
x = super().forward(x.flatten(2).permute(0, 2, 1), pos=pos_embed.to(device=x.device, dtype=x.dtype))
|
|
return x.permute(0, 2, 1).view([-1, c, h, w]).contiguous()
|
|
|
|
@staticmethod
|
|
def build_2d_sincos_position_embedding(w, h, embed_dim=256, temperature=10000.0):
|
|
"""Builds 2D sine-cosine position embedding."""
|
|
grid_w = torch.arange(int(w), dtype=torch.float32)
|
|
grid_h = torch.arange(int(h), dtype=torch.float32)
|
|
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing='ij')
|
|
assert embed_dim % 4 == 0, \
|
|
'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'
|
|
pos_dim = embed_dim // 4
|
|
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
|
|
omega = 1. / (temperature ** omega)
|
|
|
|
out_w = grid_w.flatten()[..., None] @ omega[None]
|
|
out_h = grid_h.flatten()[..., None] @ omega[None]
|
|
|
|
return torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h), torch.cos(out_h)], 1)[None]
|
|
|
|
|
|
class TransformerLayer(nn.Module):
|
|
"""Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)."""
|
|
|
|
def __init__(self, c, num_heads):
|
|
"""Initializes a self-attention mechanism using linear transformations and multi-head attention."""
|
|
super().__init__()
|
|
self.q = nn.Linear(c, c, bias=False)
|
|
self.k = nn.Linear(c, c, bias=False)
|
|
self.v = nn.Linear(c, c, bias=False)
|
|
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
|
|
self.fc1 = nn.Linear(c, c, bias=False)
|
|
self.fc2 = nn.Linear(c, c, bias=False)
|
|
|
|
def forward(self, x):
|
|
"""Apply a transformer block to the input x and return the output."""
|
|
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
|
|
return self.fc2(self.fc1(x)) + x
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
"""Vision Transformer https://arxiv.org/abs/2010.11929."""
|
|
|
|
def __init__(self, c1, c2, num_heads, num_layers):
|
|
"""Initialize a Transformer module with position embedding and specified number of heads and layers."""
|
|
super().__init__()
|
|
self.conv = None
|
|
if c1 != c2:
|
|
self.conv = Conv(c1, c2)
|
|
self.linear = nn.Linear(c2, c2) # learnable position embedding
|
|
self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
|
|
self.c2 = c2
|
|
|
|
def forward(self, x):
|
|
"""Forward propagates the input through the bottleneck module."""
|
|
if self.conv is not None:
|
|
x = self.conv(x)
|
|
b, _, w, h = x.shape
|
|
p = x.flatten(2).permute(2, 0, 1)
|
|
return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
|
|
|
|
|
|
class MLPBlock(nn.Module):
|
|
"""Implements a single block of a multi-layer perceptron."""
|
|
|
|
def __init__(self, embedding_dim, mlp_dim, act=nn.GELU):
|
|
"""Initialize the MLPBlock with specified embedding dimension, MLP dimension, and activation function."""
|
|
super().__init__()
|
|
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
|
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
|
self.act = act()
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""Forward pass for the MLPBlock."""
|
|
return self.lin2(self.act(self.lin1(x)))
|
|
|
|
|
|
class MLP(nn.Module):
|
|
"""Implements a simple multi-layer perceptron (also called FFN)."""
|
|
|
|
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
|
|
"""Initialize the MLP with specified input, hidden, output dimensions and number of layers."""
|
|
super().__init__()
|
|
self.num_layers = num_layers
|
|
h = [hidden_dim] * (num_layers - 1)
|
|
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
|
|
|
|
def forward(self, x):
|
|
"""Forward pass for the entire MLP."""
|
|
for i, layer in enumerate(self.layers):
|
|
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
|
return x
|
|
|
|
|
|
class LayerNorm2d(nn.Module):
|
|
"""
|
|
2D Layer Normalization module inspired by Detectron2 and ConvNeXt implementations.
|
|
|
|
Original implementations in
|
|
https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py
|
|
and
|
|
https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py.
|
|
"""
|
|
|
|
def __init__(self, num_channels, eps=1e-6):
|
|
"""Initialize LayerNorm2d with the given parameters."""
|
|
super().__init__()
|
|
self.weight = nn.Parameter(torch.ones(num_channels))
|
|
self.bias = nn.Parameter(torch.zeros(num_channels))
|
|
self.eps = eps
|
|
|
|
def forward(self, x):
|
|
"""Perform forward pass for 2D layer normalization."""
|
|
u = x.mean(1, keepdim=True)
|
|
s = (x - u).pow(2).mean(1, keepdim=True)
|
|
x = (x - u) / torch.sqrt(s + self.eps)
|
|
return self.weight[:, None, None] * x + self.bias[:, None, None]
|
|
|
|
|
|
class MSDeformAttn(nn.Module):
|
|
"""
|
|
Multi-Scale Deformable Attention Module based on Deformable-DETR and PaddleDetection implementations.
|
|
|
|
https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py
|
|
"""
|
|
|
|
def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4):
|
|
"""Initialize MSDeformAttn with the given parameters."""
|
|
super().__init__()
|
|
if d_model % n_heads != 0:
|
|
raise ValueError(f'd_model must be divisible by n_heads, but got {d_model} and {n_heads}')
|
|
_d_per_head = d_model // n_heads
|
|
# Better to set _d_per_head to a power of 2 which is more efficient in a CUDA implementation
|
|
assert _d_per_head * n_heads == d_model, '`d_model` must be divisible by `n_heads`'
|
|
|
|
self.im2col_step = 64
|
|
|
|
self.d_model = d_model
|
|
self.n_levels = n_levels
|
|
self.n_heads = n_heads
|
|
self.n_points = n_points
|
|
|
|
self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2)
|
|
self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points)
|
|
self.value_proj = nn.Linear(d_model, d_model)
|
|
self.output_proj = nn.Linear(d_model, d_model)
|
|
|
|
self._reset_parameters()
|
|
|
|
def _reset_parameters(self):
|
|
"""Reset module parameters."""
|
|
constant_(self.sampling_offsets.weight.data, 0.)
|
|
thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads)
|
|
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
|
|
grid_init = (grid_init / grid_init.abs().max(-1, keepdim=True)[0]).view(self.n_heads, 1, 1, 2).repeat(
|
|
1, self.n_levels, self.n_points, 1)
|
|
for i in range(self.n_points):
|
|
grid_init[:, :, i, :] *= i + 1
|
|
with torch.no_grad():
|
|
self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
|
|
constant_(self.attention_weights.weight.data, 0.)
|
|
constant_(self.attention_weights.bias.data, 0.)
|
|
xavier_uniform_(self.value_proj.weight.data)
|
|
constant_(self.value_proj.bias.data, 0.)
|
|
xavier_uniform_(self.output_proj.weight.data)
|
|
constant_(self.output_proj.bias.data, 0.)
|
|
|
|
def forward(self, query, refer_bbox, value, value_shapes, value_mask=None):
|
|
"""
|
|
Perform forward pass for multiscale deformable attention.
|
|
|
|
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
|
|
|
|
Args:
|
|
query (torch.Tensor): [bs, query_length, C]
|
|
refer_bbox (torch.Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0),
|
|
bottom-right (1, 1), including padding area
|
|
value (torch.Tensor): [bs, value_length, C]
|
|
value_shapes (List): [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]
|
|
value_mask (Tensor): [bs, value_length], True for non-padding elements, False for padding elements
|
|
|
|
Returns:
|
|
output (Tensor): [bs, Length_{query}, C]
|
|
"""
|
|
bs, len_q = query.shape[:2]
|
|
len_v = value.shape[1]
|
|
assert sum(s[0] * s[1] for s in value_shapes) == len_v
|
|
|
|
value = self.value_proj(value)
|
|
if value_mask is not None:
|
|
value = value.masked_fill(value_mask[..., None], float(0))
|
|
value = value.view(bs, len_v, self.n_heads, self.d_model // self.n_heads)
|
|
sampling_offsets = self.sampling_offsets(query).view(bs, len_q, self.n_heads, self.n_levels, self.n_points, 2)
|
|
attention_weights = self.attention_weights(query).view(bs, len_q, self.n_heads, self.n_levels * self.n_points)
|
|
attention_weights = F.softmax(attention_weights, -1).view(bs, len_q, self.n_heads, self.n_levels, self.n_points)
|
|
# N, Len_q, n_heads, n_levels, n_points, 2
|
|
num_points = refer_bbox.shape[-1]
|
|
if num_points == 2:
|
|
offset_normalizer = torch.as_tensor(value_shapes, dtype=query.dtype, device=query.device).flip(-1)
|
|
add = sampling_offsets / offset_normalizer[None, None, None, :, None, :]
|
|
sampling_locations = refer_bbox[:, :, None, :, None, :] + add
|
|
elif num_points == 4:
|
|
add = sampling_offsets / self.n_points * refer_bbox[:, :, None, :, None, 2:] * 0.5
|
|
sampling_locations = refer_bbox[:, :, None, :, None, :2] + add
|
|
else:
|
|
raise ValueError(f'Last dim of reference_points must be 2 or 4, but got {num_points}.')
|
|
output = multi_scale_deformable_attn_pytorch(value, value_shapes, sampling_locations, attention_weights)
|
|
return self.output_proj(output)
|
|
|
|
|
|
class DeformableTransformerDecoderLayer(nn.Module):
|
|
"""
|
|
Deformable Transformer Decoder Layer inspired by PaddleDetection and Deformable-DETR implementations.
|
|
|
|
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
|
|
https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/deformable_transformer.py
|
|
"""
|
|
|
|
def __init__(self, d_model=256, n_heads=8, d_ffn=1024, dropout=0., act=nn.ReLU(), n_levels=4, n_points=4):
|
|
"""Initialize the DeformableTransformerDecoderLayer with the given parameters."""
|
|
super().__init__()
|
|
|
|
# Self attention
|
|
self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
|
|
self.dropout1 = nn.Dropout(dropout)
|
|
self.norm1 = nn.LayerNorm(d_model)
|
|
|
|
# Cross attention
|
|
self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
|
|
self.dropout2 = nn.Dropout(dropout)
|
|
self.norm2 = nn.LayerNorm(d_model)
|
|
|
|
# FFN
|
|
self.linear1 = nn.Linear(d_model, d_ffn)
|
|
self.act = act
|
|
self.dropout3 = nn.Dropout(dropout)
|
|
self.linear2 = nn.Linear(d_ffn, d_model)
|
|
self.dropout4 = nn.Dropout(dropout)
|
|
self.norm3 = nn.LayerNorm(d_model)
|
|
|
|
@staticmethod
|
|
def with_pos_embed(tensor, pos):
|
|
"""Add positional embeddings to the input tensor, if provided."""
|
|
return tensor if pos is None else tensor + pos
|
|
|
|
def forward_ffn(self, tgt):
|
|
"""Perform forward pass through the Feed-Forward Network part of the layer."""
|
|
tgt2 = self.linear2(self.dropout3(self.act(self.linear1(tgt))))
|
|
tgt = tgt + self.dropout4(tgt2)
|
|
return self.norm3(tgt)
|
|
|
|
def forward(self, embed, refer_bbox, feats, shapes, padding_mask=None, attn_mask=None, query_pos=None):
|
|
"""Perform the forward pass through the entire decoder layer."""
|
|
|
|
# Self attention
|
|
q = k = self.with_pos_embed(embed, query_pos)
|
|
tgt = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), embed.transpose(0, 1),
|
|
attn_mask=attn_mask)[0].transpose(0, 1)
|
|
embed = embed + self.dropout1(tgt)
|
|
embed = self.norm1(embed)
|
|
|
|
# Cross attention
|
|
tgt = self.cross_attn(self.with_pos_embed(embed, query_pos), refer_bbox.unsqueeze(2), feats, shapes,
|
|
padding_mask)
|
|
embed = embed + self.dropout2(tgt)
|
|
embed = self.norm2(embed)
|
|
|
|
# FFN
|
|
return self.forward_ffn(embed)
|
|
|
|
|
|
class DeformableTransformerDecoder(nn.Module):
|
|
"""
|
|
Implementation of Deformable Transformer Decoder based on PaddleDetection.
|
|
|
|
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
|
|
"""
|
|
|
|
def __init__(self, hidden_dim, decoder_layer, num_layers, eval_idx=-1):
|
|
"""Initialize the DeformableTransformerDecoder with the given parameters."""
|
|
super().__init__()
|
|
self.layers = _get_clones(decoder_layer, num_layers)
|
|
self.num_layers = num_layers
|
|
self.hidden_dim = hidden_dim
|
|
self.eval_idx = eval_idx if eval_idx >= 0 else num_layers + eval_idx
|
|
|
|
def forward(
|
|
self,
|
|
embed, # decoder embeddings
|
|
refer_bbox, # anchor
|
|
feats, # image features
|
|
shapes, # feature shapes
|
|
bbox_head,
|
|
score_head,
|
|
pos_mlp,
|
|
attn_mask=None,
|
|
padding_mask=None):
|
|
"""Perform the forward pass through the entire decoder."""
|
|
output = embed
|
|
dec_bboxes = []
|
|
dec_cls = []
|
|
last_refined_bbox = None
|
|
refer_bbox = refer_bbox.sigmoid()
|
|
for i, layer in enumerate(self.layers):
|
|
output = layer(output, refer_bbox, feats, shapes, padding_mask, attn_mask, pos_mlp(refer_bbox))
|
|
|
|
bbox = bbox_head[i](output)
|
|
refined_bbox = torch.sigmoid(bbox + inverse_sigmoid(refer_bbox))
|
|
|
|
if self.training:
|
|
dec_cls.append(score_head[i](output))
|
|
if i == 0:
|
|
dec_bboxes.append(refined_bbox)
|
|
else:
|
|
dec_bboxes.append(torch.sigmoid(bbox + inverse_sigmoid(last_refined_bbox)))
|
|
elif i == self.eval_idx:
|
|
dec_cls.append(score_head[i](output))
|
|
dec_bboxes.append(refined_bbox)
|
|
break
|
|
|
|
last_refined_bbox = refined_bbox
|
|
refer_bbox = refined_bbox.detach() if self.training else refined_bbox
|
|
|
|
return torch.stack(dec_bboxes), torch.stack(dec_cls)
|