Sleeping-post-detection-fir.../docs/ru/models/yolov8.md

163 lines
23 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

---
comments: true
description: Изучите захватывающие возможности YOLOv8, последней версии нашего детектора объектов в реальном времени! Узнайте, как передовая архитектура, предварительно обученные модели и оптимальное сочетание точности и скорости делают YOLOv8 идеальным выбором для ваших задач по обнаружению объектов.
keywords: YOLOv8, Ultralytics, детектор объектов в реальном времени, предварительно обученные модели, документация, обнаружение объектов, серия YOLO, передовая архитектура, точность, скорость
---
# YOLOv8
## Обзор
YOLOv8 - это последняя версия в серии детекторов объектов в реальном времени YOLO, обеспечивающая передовую производительность в терминах точности и скорости. Основываясь на достижениях предыдущих версий YOLO, YOLOv8 вводит новые возможности и оптимизации, делая его идеальным выбором для различных задач по обнаружению объектов в широком спектре приложений.
![Ultralytics YOLOv8](https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png)
## Основные возможности
- **Передовые архитектуры основы и шеи:** YOLOv8 использует передовые архитектуры основы и шеи, что приводит к улучшенному извлечению признаков и производительности обнаружения объектов.
- **Ключевая голова Ultralytics без якорей:** YOLOv8 применяет ключевую голову Ultralytics без якорей, что способствует более точному обнаружению и более эффективному процессу обнаружения по сравнению с якорными подходами.
- **Оптимальное сочетание точности и скорости:** С основным акцентом на поддержании оптимального баланса между точностью и скоростью, YOLOv8 подходит для задач обнаружения объектов в режиме реального времени в различных областях применения.
- **Разнообразие предварительно обученных моделей:** YOLOv8 предлагает ряд предварительно обученных моделей для различных задач и требований к производительности, что упрощает выбор подходящей модели для конкретного случая использования.
## Поддерживаемые задачи и режимы работы
Серия YOLOv8 предлагает разнообразные модели, каждая из которых специализирована для конкретных задач в компьютерном зрении. Эти модели разработаны для удовлетворения различных требований, от обнаружения объектов до более сложных задач, таких как сегментация экземпляров, определение позы/ключевых точек и классификация.
Каждая вариация серии YOLOv8 оптимизирована для своей соответствующей задачи, обеспечивая высокую производительность и точность. Кроме того, эти модели совместимы со множеством режимов работы, включая [Вывод](../modes/predict.md), [Проверку](../modes/val.md), [Обучение](../modes/train.md) и [Экспорт](../modes/export.md), что облегчает их использование на различных этапах развертывания и разработки.
| Модель | Названия файлов | Задача | Вывод | Проверка | Обучение | Экспорт |
|-------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------|----------|----------|---------|
| YOLOv8 | `yolov8n.pt` `yolov8s.pt` `yolov8m.pt` `yolov8l.pt` `yolov8x.pt` | [Обнаружение](../tasks/detect.md) | ✅ | ✅ | ✅ | ✅ |
| YOLOv8-seg | `yolov8n-seg.pt` `yolov8s-seg.pt` `yolov8m-seg.pt` `yolov8l-seg.pt` `yolov8x-seg.pt` | [Сегментация экземпляров](../tasks/segment.md) | ✅ | ✅ | ✅ | ✅ |
| YOLOv8-pose | `yolov8n-pose.pt` `yolov8s-pose.pt` `yolov8m-pose.pt` `yolov8l-pose.pt` `yolov8x-pose.pt` `yolov8x-pose-p6.pt` | [Поза/ключевые точки](../tasks/pose.md) | ✅ | ✅ | ✅ | ✅ |
| YOLOv8-cls | `yolov8n-cls.pt` `yolov8s-cls.pt` `yolov8m-cls.pt` `yolov8l-cls.pt` `yolov8x-cls.pt` | [Классификация](../tasks/classify.md) | ✅ | ✅ | ✅ | ✅ |
Данная таблица предоставляет обзор вариантов моделей YOLOv8, подчеркивая их применимость к конкретным задачам и их совместимость с различными режимами работы, такими как Вывод, Проверка, Обучение и Экспорт. Это демонстрирует гибкость и надежность серии YOLOv8, что делает их подходящими для широкого спектра приложений в компьютерном зрении.
## Показатели производительности
!!! Производительность
=== "Обнаружение (COCO)"
См. [Документацию по обнаружению](https://docs.ultralytics.com/tasks/detect/) для примеров использования этих моделей, обученных на [COCO](https://docs.ultralytics.com/datasets/detect/coco/), включающих 80 предварительно обученных классов.
| Модель | размер<br><sup>(пиксели) | mAP<sup>val<br>50-95 | Скорость<br><sup>CPU ONNX<br>(мс) | Скорость<br><sup>A100 TensorRT<br>(мс) | параметры<br><sup>(М) | FLOPs<br><sup>(Б) |
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
=== "Обнаружение (Open Images V7)"
См. [Документацию по обнаружению](https://docs.ultralytics.com/tasks/detect/) для примеров использования этих моделей, обученных на [Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/), включающих 600 предварительно обученных классов.
| Модель | размер<br><sup>(пиксели) | mAP<sup>val<br>50-95 | Скорость<br><sup>CPU ONNX<br>(мс) | Скорость<br><sup>A100 TensorRT<br>(мс) | параметры<br><sup>(М) | FLOPs<br><sup>(Б) |
| ----------------------------------------------------------------------------------------- | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
=== "Сегментация (COCO)"
См. [Документацию по сегментации](https://docs.ultralytics.com/tasks/segment/) для примеров использования этих моделей, обученных на [COCO](https://docs.ultralytics.com/datasets/segment/coco/), включающих 80 предварительно обученных классов.
| Модель | размер<br><sup>(пиксели) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Скорость<br><sup>CPU ONNX<br>(мс) | Скорость<br><sup>A100 TensorRT<br>(мс) | параметры<br><sup>(M) | FLOPs<br><sup>(Б) |
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
=== "Классификация (ImageNet)"
См. [Документацию по классификации](https://docs.ultralytics.com/tasks/classify/) для примеров использования этих моделей, обученных на [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), включающих 1000 предварительно обученных классов.
| Модель | размер<br><sup>(пиксели) | acc<br><sup>top1 | acc<br><sup>top5 | Скорость<br><sup>CPU ONNX<br>(мс) | Скорость<br><sup>A100 TensorRT<br>(мс) | параметры<br><sup>(M) | FLOPs<br><sup>(Б) при 640 |
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 |
| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | 23.4 | 0.35 | 6.4 | 13.5 |
| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | 85.4 | 0.62 | 17.0 | 42.7 |
| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1 | 163.0 | 0.87 | 37.5 | 99.7 |
| [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | 232.0 | 1.01 | 57.4 | 154.8 |
=== "Поза (COCO)"
См. [Документацию по оценке позы](https://docs.ultralytics.com/tasks/segment/) для примеров использования этих моделей, обученных на [COCO](https://docs.ultralytics.com/datasets/pose/coco/), включающих 1 предварительно обученный класс - 'person'.
| Модель | размер<br><sup>(пиксели) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Скорость<br><sup>CPU ONNX<br>(мс) | Скорость<br><sup>A100 TensorRT<br>(мс) | параметры<br><sup>(M) | FLOPs<br><sup>(Б) |
| ---------------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
| [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
| [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
| [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
| [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
## Примеры использования
В этом примере представлены простые примеры обучения и вывода с использованием YOLOv8. Для полной документации об этих и других [режимах](../modes/index.md) см. страницы документации по [Предсказанию](../modes/predict.md), [Обучению](../modes/train.md), [Проверке](../modes/val.md) и [Экспорту](../modes/export.md).
Обратите внимание, что приведенный ниже пример относится к моделям YOLOv8 для [Детекции](../tasks/detect.md) объектов. Для дополнительных поддерживаемых задач см. документацию по [Сегментации](../tasks/segment.md), [Классификации](../tasks/classify.md) и [Позе](../tasks/pose.md).
!!! Example "Пример"
=== "Python"
Предварительно обученные модели PyTorch `*.pt`, а также файлы конфигурации `*.yaml` могут быть переданы классу `YOLO()` для создания экземпляра модели на Python:
```python
from ultralytics import YOLO
# Загрузите предварительно обученную модель YOLOv8n для COCO
model = YOLO('yolov8n.pt')
# Отобразить информацию о модели (по желанию)
model.info()
# Обучите модель на примере набора данных COCO8 в течение 100 эпох
results = model.train(data='coco8.yaml', epochs=100, imgsz=640)
# Выполните вывод с использованием модели YOLOv8n на изображении 'bus.jpg'
results = model('путь/к/изображению/bus.jpg')
```
=== "CLI"
Доступны команды CLI для прямого запуска моделей:
```bash
# Загрузите предварительно обученную модель YOLOv8n для COCO и обучите ее на примере набора данных COCO8 в течение 100 эпох
yolo train model=yolov8n.pt data=coco8.yaml epochs=100 imgsz=640
# Загрузить предварительно обученную модель YOLOv8n для COCO и выполнить вывод на изображении 'bus.jpg'
yolo predict model=yolov8n.pt source=path/to/bus.jpg
```
## Цитирование и благодарности
Если вы используете модель YOLOv8 или любое другое программное обеспечение из этого репозитория в своей работе, пожалуйста, процитируйте его в следующем формате:
!!! Quote ""
=== "BibTeX"
```bibtex
@software{yolov8_ultralytics,
author = {Glenn Jocher and Ayush Chaurasia and Jing Qiu},
title = {Ultralytics YOLOv8},
version = {8.0.0},
year = {2023},
url = {https://github.com/ultralytics/ultralytics},
orcid = {0000-0001-5950-6979, 0000-0002-7603-6750, 0000-0003-3783-7069},
license = {AGPL-3.0}
}
```
Обратите внимание, что идентификатор цифрового объекта (DOI) находится на стадии получения и будет добавлен в цитирование, как только он станет доступным. Модели YOLOv8 предоставляются под лицензией [AGPL-3.0](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) и лицензией [Enterprise](https://ultralytics.com/license).