71 lines
2.5 KiB
Python
71 lines
2.5 KiB
Python
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
from functools import partial
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
|
|
from ultralytics.utils import IterableSimpleNamespace, yaml_load
|
|
from ultralytics.utils.checks import check_yaml
|
|
|
|
from .bot_sort import BOTSORT
|
|
from .byte_tracker import BYTETracker
|
|
|
|
TRACKER_MAP = {'bytetrack': BYTETracker, 'botsort': BOTSORT}
|
|
|
|
|
|
def on_predict_start(predictor, persist=False):
|
|
"""
|
|
Initialize trackers for object tracking during prediction.
|
|
|
|
Args:
|
|
predictor (object): The predictor object to initialize trackers for.
|
|
persist (bool, optional): Whether to persist the trackers if they already exist. Defaults to False.
|
|
|
|
Raises:
|
|
AssertionError: If the tracker_type is not 'bytetrack' or 'botsort'.
|
|
"""
|
|
if hasattr(predictor, 'trackers') and persist:
|
|
return
|
|
tracker = check_yaml(predictor.args.tracker)
|
|
cfg = IterableSimpleNamespace(**yaml_load(tracker))
|
|
assert cfg.tracker_type in ['bytetrack', 'botsort'], \
|
|
f"Only support 'bytetrack' and 'botsort' for now, but got '{cfg.tracker_type}'"
|
|
trackers = []
|
|
for _ in range(predictor.dataset.bs):
|
|
tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30)
|
|
trackers.append(tracker)
|
|
predictor.trackers = trackers
|
|
|
|
|
|
def on_predict_postprocess_end(predictor, persist=False):
|
|
"""Postprocess detected boxes and update with object tracking."""
|
|
bs = predictor.dataset.bs
|
|
path, im0s = predictor.batch[:2]
|
|
|
|
for i in range(bs):
|
|
if not persist and predictor.vid_path[i] != str(predictor.save_dir / Path(path[i]).name): # new video
|
|
predictor.trackers[i].reset()
|
|
|
|
det = predictor.results[i].boxes.cpu().numpy()
|
|
if len(det) == 0:
|
|
continue
|
|
tracks = predictor.trackers[i].update(det, im0s[i])
|
|
if len(tracks) == 0:
|
|
continue
|
|
idx = tracks[:, -1].astype(int)
|
|
predictor.results[i] = predictor.results[i][idx]
|
|
predictor.results[i].update(boxes=torch.as_tensor(tracks[:, :-1]))
|
|
|
|
|
|
def register_tracker(model, persist):
|
|
"""
|
|
Register tracking callbacks to the model for object tracking during prediction.
|
|
|
|
Args:
|
|
model (object): The model object to register tracking callbacks for.
|
|
persist (bool): Whether to persist the trackers if they already exist.
|
|
"""
|
|
model.add_callback('on_predict_start', partial(on_predict_start, persist=persist))
|
|
model.add_callback('on_predict_postprocess_end', partial(on_predict_postprocess_end, persist=persist))
|