127 lines
8.0 KiB
YAML
127 lines
8.0 KiB
YAML
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||
|
# Default training settings and hyperparameters for medium-augmentation COCO training
|
||
|
|
||
|
task: detect # (str) YOLO task, i.e. detect, segment, classify, pose
|
||
|
mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark
|
||
|
|
||
|
# Train settings -------------------------------------------------------------------------------------------------------
|
||
|
model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
|
||
|
data: # (str, optional) path to data file, i.e. coco8.yaml
|
||
|
epochs: 100 # (int) number of epochs to train for
|
||
|
time: # (float, optional) number of hours to train for, overrides epochs if supplied
|
||
|
patience: 100 # (int) epochs to wait for no observable improvement for early stopping of training
|
||
|
batch: 16 # (int) number of images per batch (-1 for AutoBatch)
|
||
|
imgsz: 640 # (int | list) input images size as int for train and val modes, or list[h,w] for predict and export modes
|
||
|
save: True # (bool) save train checkpoints and predict results
|
||
|
save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1)
|
||
|
cache: False # (bool) True/ram, disk or False. Use cache for data loading
|
||
|
device: # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
|
||
|
workers: 8 # (int) number of worker threads for data loading (per RANK if DDP)
|
||
|
project: # (str, optional) project name
|
||
|
name: # (str, optional) experiment name, results saved to 'project/name' directory
|
||
|
exist_ok: False # (bool) whether to overwrite existing experiment
|
||
|
pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str)
|
||
|
optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]
|
||
|
verbose: True # (bool) whether to print verbose output
|
||
|
seed: 0 # (int) random seed for reproducibility
|
||
|
deterministic: True # (bool) whether to enable deterministic mode
|
||
|
single_cls: False # (bool) train multi-class data as single-class
|
||
|
rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val'
|
||
|
cos_lr: False # (bool) use cosine learning rate scheduler
|
||
|
close_mosaic: 10 # (int) disable mosaic augmentation for final epochs (0 to disable)
|
||
|
resume: False # (bool) resume training from last checkpoint
|
||
|
amp: True # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check
|
||
|
fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set)
|
||
|
profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers
|
||
|
freeze: None # (int | list, optional) freeze first n layers, or freeze list of layer indices during training
|
||
|
multi_scale: False # (bool) Whether to use multiscale during training
|
||
|
# Segmentation
|
||
|
overlap_mask: True # (bool) masks should overlap during training (segment train only)
|
||
|
mask_ratio: 4 # (int) mask downsample ratio (segment train only)
|
||
|
# Classification
|
||
|
dropout: 0.0 # (float) use dropout regularization (classify train only)
|
||
|
|
||
|
# Val/Test settings ----------------------------------------------------------------------------------------------------
|
||
|
val: True # (bool) validate/test during training
|
||
|
split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train'
|
||
|
save_json: False # (bool) save results to JSON file
|
||
|
save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions)
|
||
|
conf: # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val)
|
||
|
iou: 0.7 # (float) intersection over union (IoU) threshold for NMS
|
||
|
max_det: 300 # (int) maximum number of detections per image
|
||
|
half: False # (bool) use half precision (FP16)
|
||
|
dnn: False # (bool) use OpenCV DNN for ONNX inference
|
||
|
plots: True # (bool) save plots and images during train/val
|
||
|
|
||
|
# Predict settings -----------------------------------------------------------------------------------------------------
|
||
|
source: # (str, optional) source directory for images or videos
|
||
|
vid_stride: 1 # (int) video frame-rate stride
|
||
|
stream_buffer: False # (bool) buffer all streaming frames (True) or return the most recent frame (False)
|
||
|
visualize: False # (bool) visualize model features
|
||
|
augment: False # (bool) apply image augmentation to prediction sources
|
||
|
agnostic_nms: False # (bool) class-agnostic NMS
|
||
|
classes: # (int | list[int], optional) filter results by class, i.e. classes=0, or classes=[0,2,3]
|
||
|
retina_masks: False # (bool) use high-resolution segmentation masks
|
||
|
embed: # (list[int], optional) return feature vectors/embeddings from given layers
|
||
|
|
||
|
# Visualize settings ---------------------------------------------------------------------------------------------------
|
||
|
show: False # (bool) show predicted images and videos if environment allows
|
||
|
save_frames: False # (bool) save predicted individual video frames
|
||
|
save_txt: False # (bool) save results as .txt file
|
||
|
save_conf: False # (bool) save results with confidence scores
|
||
|
save_crop: False # (bool) save cropped images with results
|
||
|
show_labels: True # (bool) show prediction labels, i.e. 'person'
|
||
|
show_conf: True # (bool) show prediction confidence, i.e. '0.99'
|
||
|
show_boxes: True # (bool) show prediction boxes
|
||
|
line_width: # (int, optional) line width of the bounding boxes. Scaled to image size if None.
|
||
|
|
||
|
# Export settings ------------------------------------------------------------------------------------------------------
|
||
|
format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats
|
||
|
keras: False # (bool) use Kera=s
|
||
|
optimize: False # (bool) TorchScript: optimize for mobile
|
||
|
int8: False # (bool) CoreML/TF INT8 quantization
|
||
|
dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes
|
||
|
simplify: False # (bool) ONNX: simplify model using `onnxslim`
|
||
|
opset: # (int, optional) ONNX: opset version
|
||
|
workspace: 4 # (int) TensorRT: workspace size (GB)
|
||
|
nms: False # (bool) CoreML: add NMS
|
||
|
|
||
|
# Hyperparameters ------------------------------------------------------------------------------------------------------
|
||
|
lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
|
||
|
lrf: 0.01 # (float) final learning rate (lr0 * lrf)
|
||
|
momentum: 0.937 # (float) SGD momentum/Adam beta1
|
||
|
weight_decay: 0.0005 # (float) optimizer weight decay 5e-4
|
||
|
warmup_epochs: 3.0 # (float) warmup epochs (fractions ok)
|
||
|
warmup_momentum: 0.8 # (float) warmup initial momentum
|
||
|
warmup_bias_lr: 0.1 # (float) warmup initial bias lr
|
||
|
box: 7.5 # (float) box loss gain
|
||
|
cls: 0.5 # (float) cls loss gain (scale with pixels)
|
||
|
dfl: 1.5 # (float) dfl loss gain
|
||
|
pose: 12.0 # (float) pose loss gain
|
||
|
kobj: 1.0 # (float) keypoint obj loss gain
|
||
|
label_smoothing: 0.0 # (float) label smoothing (fraction)
|
||
|
nbs: 64 # (int) nominal batch size
|
||
|
hsv_h: 0.015 # (float) image HSV-Hue augmentation (fraction)
|
||
|
hsv_s: 0.7 # (float) image HSV-Saturation augmentation (fraction)
|
||
|
hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction)
|
||
|
degrees: 0.0 # (float) image rotation (+/- deg)
|
||
|
translate: 0.1 # (float) image translation (+/- fraction)
|
||
|
scale: 0.5 # (float) image scale (+/- gain)
|
||
|
shear: 0.0 # (float) image shear (+/- deg)
|
||
|
perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001
|
||
|
flipud: 0.0 # (float) image flip up-down (probability)
|
||
|
fliplr: 0.5 # (float) image flip left-right (probability)
|
||
|
bgr: 0.0 # (float) image channel BGR (probability)
|
||
|
mosaic: 1.0 # (float) image mosaic (probability)
|
||
|
mixup: 0.0 # (float) image mixup (probability)
|
||
|
copy_paste: 0.0 # (float) segment copy-paste (probability)
|
||
|
auto_augment: randaugment # (str) auto augmentation policy for classification (randaugment, autoaugment, augmix)
|
||
|
erasing: 0.4 # (float) probability of random erasing during classification training (0-0.9), 0 means no erasing, must be less than 1.0.
|
||
|
crop_fraction: 1.0 # (float) image crop fraction for classification (0.1-1), 1.0 means no crop, must be greater than 0.
|
||
|
|
||
|
# Custom config.yaml ---------------------------------------------------------------------------------------------------
|
||
|
cfg: # (str, optional) for overriding defaults.yaml
|
||
|
|
||
|
# Tracker settings ------------------------------------------------------------------------------------------------------
|
||
|
tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml]
|