404 lines
17 KiB
Python
404 lines
17 KiB
Python
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|||
|
"""
|
|||
|
Run prediction on images, videos, directories, globs, YouTube, webcam, streams, etc.
|
|||
|
|
|||
|
Usage - sources:
|
|||
|
$ yolo mode=predict model=yolov8n.pt source=0 # webcam
|
|||
|
img.jpg # image
|
|||
|
vid.mp4 # video
|
|||
|
screen # screenshot
|
|||
|
path/ # directory
|
|||
|
list.txt # list of images
|
|||
|
list.streams # list of streams
|
|||
|
'path/*.jpg' # glob
|
|||
|
'https://youtu.be/LNwODJXcvt4' # YouTube
|
|||
|
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP, TCP stream
|
|||
|
|
|||
|
Usage - formats:
|
|||
|
$ yolo mode=predict model=yolov8n.pt # PyTorch
|
|||
|
yolov8n.torchscript # TorchScript
|
|||
|
yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
|
|||
|
yolov8n_openvino_model # OpenVINO
|
|||
|
yolov8n.engine # TensorRT
|
|||
|
yolov8n.mlpackage # CoreML (macOS-only)
|
|||
|
yolov8n_saved_model # TensorFlow SavedModel
|
|||
|
yolov8n.pb # TensorFlow GraphDef
|
|||
|
yolov8n.tflite # TensorFlow Lite
|
|||
|
yolov8n_edgetpu.tflite # TensorFlow Edge TPU
|
|||
|
yolov8n_paddle_model # PaddlePaddle
|
|||
|
yolov8n_ncnn_model # NCNN
|
|||
|
"""
|
|||
|
|
|||
|
import platform
|
|||
|
import re
|
|||
|
import threading
|
|||
|
from pathlib import Path
|
|||
|
|
|||
|
import cv2
|
|||
|
import numpy as np
|
|||
|
import torch
|
|||
|
|
|||
|
from ultralytics.cfg import get_cfg, get_save_dir
|
|||
|
from ultralytics.data import load_inference_source
|
|||
|
from ultralytics.data.augment import LetterBox, classify_transforms
|
|||
|
from ultralytics.nn.autobackend import AutoBackend
|
|||
|
from ultralytics.utils import DEFAULT_CFG, LOGGER, MACOS, WINDOWS, callbacks, colorstr, ops
|
|||
|
from ultralytics.utils.checks import check_imgsz, check_imshow
|
|||
|
from ultralytics.utils.files import increment_path
|
|||
|
from ultralytics.utils.torch_utils import select_device, smart_inference_mode
|
|||
|
|
|||
|
STREAM_WARNING = """
|
|||
|
WARNING ⚠️ inference results will accumulate in RAM unless `stream=True` is passed, causing potential out-of-memory
|
|||
|
errors for large sources or long-running streams and videos. See https://docs.ultralytics.com/modes/predict/ for help.
|
|||
|
|
|||
|
Example:
|
|||
|
results = model(source=..., stream=True) # generator of Results objects
|
|||
|
for r in results:
|
|||
|
boxes = r.boxes # Boxes object for bbox outputs
|
|||
|
masks = r.masks # Masks object for segment masks outputs
|
|||
|
probs = r.probs # Class probabilities for classification outputs
|
|||
|
"""
|
|||
|
|
|||
|
|
|||
|
class BasePredictor:
|
|||
|
"""
|
|||
|
BasePredictor.
|
|||
|
|
|||
|
A base class for creating predictors.
|
|||
|
|
|||
|
Attributes:
|
|||
|
args (SimpleNamespace): Configuration for the predictor.
|
|||
|
save_dir (Path): Directory to save results.
|
|||
|
done_warmup (bool): Whether the predictor has finished setup.
|
|||
|
model (nn.Module): Model used for prediction.
|
|||
|
data (dict): Data configuration.
|
|||
|
device (torch.device): Device used for prediction.
|
|||
|
dataset (Dataset): Dataset used for prediction.
|
|||
|
vid_writer (dict): Dictionary of {save_path: video_writer, ...} writer for saving video output.
|
|||
|
"""
|
|||
|
|
|||
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
|||
|
"""
|
|||
|
Initializes the BasePredictor class.
|
|||
|
|
|||
|
Args:
|
|||
|
cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG.
|
|||
|
overrides (dict, optional): Configuration overrides. Defaults to None.
|
|||
|
"""
|
|||
|
self.args = get_cfg(cfg, overrides)
|
|||
|
self.save_dir = get_save_dir(self.args)
|
|||
|
if self.args.conf is None:
|
|||
|
self.args.conf = 0.25 # default conf=0.25
|
|||
|
self.done_warmup = False
|
|||
|
if self.args.show:
|
|||
|
self.args.show = check_imshow(warn=True)
|
|||
|
|
|||
|
# Usable if setup is done
|
|||
|
self.model = None
|
|||
|
self.data = self.args.data # data_dict
|
|||
|
self.imgsz = None
|
|||
|
self.device = None
|
|||
|
self.dataset = None
|
|||
|
self.vid_writer = {} # dict of {save_path: video_writer, ...}
|
|||
|
self.plotted_img = None
|
|||
|
self.source_type = None
|
|||
|
self.seen = 0
|
|||
|
self.windows = []
|
|||
|
self.batch = None
|
|||
|
self.results = None
|
|||
|
self.transforms = None
|
|||
|
self.callbacks = _callbacks or callbacks.get_default_callbacks()
|
|||
|
self.txt_path = None
|
|||
|
self._lock = threading.Lock() # for automatic thread-safe inference
|
|||
|
callbacks.add_integration_callbacks(self)
|
|||
|
|
|||
|
def preprocess(self, im):
|
|||
|
"""
|
|||
|
Prepares input image before inference.
|
|||
|
|
|||
|
Args:
|
|||
|
im (torch.Tensor | List(np.ndarray)): BCHW for tensor, [(HWC) x B] for list.
|
|||
|
"""
|
|||
|
not_tensor = not isinstance(im, torch.Tensor)
|
|||
|
if not_tensor:
|
|||
|
im = np.stack(self.pre_transform(im))
|
|||
|
im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW, (n, 3, h, w)
|
|||
|
im = np.ascontiguousarray(im) # contiguous
|
|||
|
im = torch.from_numpy(im)
|
|||
|
|
|||
|
im = im.to(self.device)
|
|||
|
im = im.half() if self.model.fp16 else im.float() # uint8 to fp16/32
|
|||
|
if not_tensor:
|
|||
|
im /= 255 # 0 - 255 to 0.0 - 1.0
|
|||
|
return im
|
|||
|
|
|||
|
def inference(self, im, *args, **kwargs):
|
|||
|
"""Runs inference on a given image using the specified model and arguments."""
|
|||
|
visualize = (
|
|||
|
increment_path(self.save_dir / Path(self.batch[0][0]).stem, mkdir=True)
|
|||
|
if self.args.visualize and (not self.source_type.tensor)
|
|||
|
else False
|
|||
|
)
|
|||
|
return self.model(im, augment=self.args.augment, visualize=visualize, embed=self.args.embed, *args, **kwargs)
|
|||
|
|
|||
|
def pre_transform(self, im):
|
|||
|
"""
|
|||
|
Pre-transform input image before inference.
|
|||
|
|
|||
|
Args:
|
|||
|
im (List(np.ndarray)): (N, 3, h, w) for tensor, [(h, w, 3) x N] for list.
|
|||
|
|
|||
|
Returns:
|
|||
|
(list): A list of transformed images.
|
|||
|
"""
|
|||
|
same_shapes = len({x.shape for x in im}) == 1
|
|||
|
letterbox = LetterBox(self.imgsz, auto=same_shapes and self.model.pt, stride=self.model.stride)
|
|||
|
return [letterbox(image=x) for x in im]
|
|||
|
|
|||
|
def postprocess(self, preds, img, orig_imgs):
|
|||
|
"""Post-processes predictions for an image and returns them."""
|
|||
|
return preds
|
|||
|
|
|||
|
def __call__(self, source=None, model=None, stream=False, *args, **kwargs):
|
|||
|
"""Performs inference on an image or stream."""
|
|||
|
self.stream = stream
|
|||
|
if stream:
|
|||
|
return self.stream_inference(source, model, *args, **kwargs)
|
|||
|
else:
|
|||
|
return list(self.stream_inference(source, model, *args, **kwargs)) # merge list of Result into one
|
|||
|
|
|||
|
def predict_cli(self, source=None, model=None):
|
|||
|
"""
|
|||
|
Method used for Command Line Interface (CLI) prediction.
|
|||
|
|
|||
|
This function is designed to run predictions using the CLI. It sets up the source and model, then processes
|
|||
|
the inputs in a streaming manner. This method ensures that no outputs accumulate in memory by consuming the
|
|||
|
generator without storing results.
|
|||
|
|
|||
|
Note:
|
|||
|
Do not modify this function or remove the generator. The generator ensures that no outputs are
|
|||
|
accumulated in memory, which is critical for preventing memory issues during long-running predictions.
|
|||
|
"""
|
|||
|
gen = self.stream_inference(source, model)
|
|||
|
for _ in gen: # sourcery skip: remove-empty-nested-block, noqa
|
|||
|
pass
|
|||
|
|
|||
|
def setup_source(self, source):
|
|||
|
"""Sets up source and inference mode."""
|
|||
|
self.imgsz = check_imgsz(self.args.imgsz, stride=self.model.stride, min_dim=2) # check image size
|
|||
|
self.transforms = (
|
|||
|
getattr(
|
|||
|
self.model.model,
|
|||
|
"transforms",
|
|||
|
classify_transforms(self.imgsz[0], crop_fraction=self.args.crop_fraction),
|
|||
|
)
|
|||
|
if self.args.task == "classify"
|
|||
|
else None
|
|||
|
)
|
|||
|
self.dataset = load_inference_source(
|
|||
|
source=source,
|
|||
|
batch=self.args.batch,
|
|||
|
vid_stride=self.args.vid_stride,
|
|||
|
buffer=self.args.stream_buffer,
|
|||
|
)
|
|||
|
self.source_type = self.dataset.source_type
|
|||
|
if not getattr(self, "stream", True) and (
|
|||
|
self.source_type.stream
|
|||
|
or self.source_type.screenshot
|
|||
|
or len(self.dataset) > 1000 # many images
|
|||
|
or any(getattr(self.dataset, "video_flag", [False]))
|
|||
|
): # videos
|
|||
|
LOGGER.warning(STREAM_WARNING)
|
|||
|
self.vid_writer = {}
|
|||
|
|
|||
|
@smart_inference_mode()
|
|||
|
def stream_inference(self, source=None, model=None, *args, **kwargs):
|
|||
|
"""Streams real-time inference on camera feed and saves results to file."""
|
|||
|
if self.args.verbose:
|
|||
|
LOGGER.info("")
|
|||
|
|
|||
|
# Setup model
|
|||
|
if not self.model:
|
|||
|
self.setup_model(model)
|
|||
|
|
|||
|
with self._lock: # for thread-safe inference
|
|||
|
# Setup source every time predict is called
|
|||
|
self.setup_source(source if source is not None else self.args.source)
|
|||
|
|
|||
|
# Check if save_dir/ label file exists
|
|||
|
if self.args.save or self.args.save_txt:
|
|||
|
(self.save_dir / "labels" if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
|
|||
|
|
|||
|
# Warmup model
|
|||
|
if not self.done_warmup:
|
|||
|
self.model.warmup(imgsz=(1 if self.model.pt or self.model.triton else self.dataset.bs, 3, *self.imgsz))
|
|||
|
self.done_warmup = True
|
|||
|
|
|||
|
self.seen, self.windows, self.batch = 0, [], None
|
|||
|
profilers = (
|
|||
|
ops.Profile(device=self.device),
|
|||
|
ops.Profile(device=self.device),
|
|||
|
ops.Profile(device=self.device),
|
|||
|
)
|
|||
|
self.run_callbacks("on_predict_start")
|
|||
|
for self.batch in self.dataset:
|
|||
|
self.run_callbacks("on_predict_batch_start")
|
|||
|
paths, im0s, s = self.batch
|
|||
|
|
|||
|
# Preprocess
|
|||
|
with profilers[0]:
|
|||
|
im = self.preprocess(im0s)
|
|||
|
|
|||
|
# Inference
|
|||
|
with profilers[1]:
|
|||
|
preds = self.inference(im, *args, **kwargs)
|
|||
|
if self.args.embed:
|
|||
|
yield from [preds] if isinstance(preds, torch.Tensor) else preds # yield embedding tensors
|
|||
|
continue
|
|||
|
|
|||
|
# Postprocess
|
|||
|
with profilers[2]:
|
|||
|
self.results = self.postprocess(preds, im, im0s)
|
|||
|
self.run_callbacks("on_predict_postprocess_end")
|
|||
|
|
|||
|
# Visualize, save, write results
|
|||
|
n = len(im0s)
|
|||
|
for i in range(n):
|
|||
|
self.seen += 1
|
|||
|
self.results[i].speed = {
|
|||
|
"preprocess": profilers[0].dt * 1e3 / n,
|
|||
|
"inference": profilers[1].dt * 1e3 / n,
|
|||
|
"postprocess": profilers[2].dt * 1e3 / n,
|
|||
|
}
|
|||
|
if self.args.verbose or self.args.save or self.args.save_txt or self.args.show:
|
|||
|
s[i] += self.write_results(i, Path(paths[i]), im, s)
|
|||
|
|
|||
|
# Print batch results
|
|||
|
if self.args.verbose:
|
|||
|
LOGGER.info("\n".join(s))
|
|||
|
|
|||
|
self.run_callbacks("on_predict_batch_end")
|
|||
|
yield from self.results
|
|||
|
|
|||
|
# Release assets
|
|||
|
for v in self.vid_writer.values():
|
|||
|
if isinstance(v, cv2.VideoWriter):
|
|||
|
v.release()
|
|||
|
|
|||
|
# Print final results
|
|||
|
if self.args.verbose and self.seen:
|
|||
|
t = tuple(x.t / self.seen * 1e3 for x in profilers) # speeds per image
|
|||
|
LOGGER.info(
|
|||
|
f"Speed: %.1fms preprocess, %.1fms inference, %.1fms postprocess per image at shape "
|
|||
|
f"{(min(self.args.batch, self.seen), 3, *im.shape[2:])}" % t
|
|||
|
)
|
|||
|
if self.args.save or self.args.save_txt or self.args.save_crop:
|
|||
|
nl = len(list(self.save_dir.glob("labels/*.txt"))) # number of labels
|
|||
|
s = f"\n{nl} label{'s' * (nl > 1)} saved to {self.save_dir / 'labels'}" if self.args.save_txt else ""
|
|||
|
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}")
|
|||
|
self.run_callbacks("on_predict_end")
|
|||
|
|
|||
|
def setup_model(self, model, verbose=True):
|
|||
|
"""Initialize YOLO model with given parameters and set it to evaluation mode."""
|
|||
|
self.model = AutoBackend(
|
|||
|
weights=model or self.args.model,
|
|||
|
device=select_device(self.args.device, verbose=verbose),
|
|||
|
dnn=self.args.dnn,
|
|||
|
data=self.args.data,
|
|||
|
fp16=self.args.half,
|
|||
|
batch=self.args.batch,
|
|||
|
fuse=True,
|
|||
|
verbose=verbose,
|
|||
|
)
|
|||
|
|
|||
|
self.device = self.model.device # update device
|
|||
|
self.args.half = self.model.fp16 # update half
|
|||
|
self.model.eval()
|
|||
|
|
|||
|
def write_results(self, i, p, im, s):
|
|||
|
"""Write inference results to a file or directory."""
|
|||
|
string = "" # print string
|
|||
|
if len(im.shape) == 3:
|
|||
|
im = im[None] # expand for batch dim
|
|||
|
if self.source_type.stream or self.source_type.from_img or self.source_type.tensor: # batch_size >= 1
|
|||
|
string += f"{i}: "
|
|||
|
frame = self.dataset.count
|
|||
|
else:
|
|||
|
match = re.search(r"frame (\d+)/", s[i])
|
|||
|
frame = int(match[1]) if match else None # 0 if frame undetermined
|
|||
|
|
|||
|
self.txt_path = self.save_dir / "labels" / (p.stem + ("" if self.dataset.mode == "image" else f"_{frame}"))
|
|||
|
string += "%gx%g " % im.shape[2:]
|
|||
|
result = self.results[i]
|
|||
|
result.save_dir = self.save_dir.__str__() # used in other locations
|
|||
|
string += f"{result.verbose()}{result.speed['inference']:.1f}ms"
|
|||
|
|
|||
|
# Add predictions to image
|
|||
|
if self.args.save or self.args.show:
|
|||
|
self.plotted_img = result.plot(
|
|||
|
line_width=self.args.line_width,
|
|||
|
boxes=self.args.show_boxes,
|
|||
|
conf=self.args.show_conf,
|
|||
|
labels=self.args.show_labels,
|
|||
|
im_gpu=None if self.args.retina_masks else im[i],
|
|||
|
)
|
|||
|
|
|||
|
# Save results
|
|||
|
if self.args.save_txt:
|
|||
|
result.save_txt(f"{self.txt_path}.txt", save_conf=self.args.save_conf)
|
|||
|
if self.args.save_crop:
|
|||
|
result.save_crop(save_dir=self.save_dir / "crops", file_name=self.txt_path.stem)
|
|||
|
if self.args.show:
|
|||
|
self.show(str(p))
|
|||
|
if self.args.save:
|
|||
|
self.save_predicted_images(str(self.save_dir / p.name), frame)
|
|||
|
|
|||
|
return string
|
|||
|
|
|||
|
def save_predicted_images(self, save_path="", frame=0):
|
|||
|
"""Save video predictions as mp4 at specified path."""
|
|||
|
im = self.plotted_img
|
|||
|
|
|||
|
# Save videos and streams
|
|||
|
if self.dataset.mode in {"stream", "video"}:
|
|||
|
fps = self.dataset.fps if self.dataset.mode == "video" else 30
|
|||
|
frames_path = f'{save_path.split(".", 1)[0]}_frames/'
|
|||
|
if save_path not in self.vid_writer: # new video
|
|||
|
if self.args.save_frames:
|
|||
|
Path(frames_path).mkdir(parents=True, exist_ok=True)
|
|||
|
suffix, fourcc = (".mp4", "avc1") if MACOS else (".avi", "WMV2") if WINDOWS else (".avi", "MJPG")
|
|||
|
self.vid_writer[save_path] = cv2.VideoWriter(
|
|||
|
filename=str(Path(save_path).with_suffix(suffix)),
|
|||
|
fourcc=cv2.VideoWriter_fourcc(*fourcc),
|
|||
|
fps=fps, # integer required, floats produce error in MP4 codec
|
|||
|
frameSize=(im.shape[1], im.shape[0]), # (width, height)
|
|||
|
)
|
|||
|
|
|||
|
# Save video
|
|||
|
self.vid_writer[save_path].write(im)
|
|||
|
if self.args.save_frames:
|
|||
|
cv2.imwrite(f"{frames_path}{frame}.jpg", im)
|
|||
|
|
|||
|
# Save images
|
|||
|
else:
|
|||
|
cv2.imwrite(save_path, im)
|
|||
|
|
|||
|
def show(self, p=""):
|
|||
|
"""Display an image in a window using OpenCV imshow()."""
|
|||
|
im = self.plotted_img
|
|||
|
if platform.system() == "Linux" and p not in self.windows:
|
|||
|
self.windows.append(p)
|
|||
|
cv2.namedWindow(p, cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
|
|||
|
cv2.resizeWindow(p, im.shape[1], im.shape[0]) # (width, height)
|
|||
|
cv2.imshow(p, im)
|
|||
|
cv2.waitKey(300 if self.dataset.mode == "image" else 1) # 1 millisecond
|
|||
|
|
|||
|
def run_callbacks(self, event: str):
|
|||
|
"""Runs all registered callbacks for a specific event."""
|
|||
|
for callback in self.callbacks.get(event, []):
|
|||
|
callback(self)
|
|||
|
|
|||
|
def add_callback(self, event: str, func):
|
|||
|
"""Add callback."""
|
|||
|
self.callbacks[event].append(func)
|