130 lines
4.6 KiB
Python
130 lines
4.6 KiB
Python
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||
|
|
||
|
import cv2
|
||
|
|
||
|
from ultralytics.utils.checks import check_imshow
|
||
|
from ultralytics.utils.plotting import Annotator
|
||
|
|
||
|
|
||
|
class AIGym:
|
||
|
"""A class to manage the gym steps of people in a real-time video stream based on their poses."""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
kpts_to_check,
|
||
|
line_thickness=2,
|
||
|
view_img=False,
|
||
|
pose_up_angle=145.0,
|
||
|
pose_down_angle=90.0,
|
||
|
pose_type="pullup",
|
||
|
):
|
||
|
"""
|
||
|
Initializes the AIGym class with the specified parameters.
|
||
|
|
||
|
Args:
|
||
|
kpts_to_check (list): Indices of keypoints to check.
|
||
|
line_thickness (int, optional): Thickness of the lines drawn. Defaults to 2.
|
||
|
view_img (bool, optional): Flag to display the image. Defaults to False.
|
||
|
pose_up_angle (float, optional): Angle threshold for the 'up' pose. Defaults to 145.0.
|
||
|
pose_down_angle (float, optional): Angle threshold for the 'down' pose. Defaults to 90.0.
|
||
|
pose_type (str, optional): Type of pose to detect ('pullup', 'pushup', 'abworkout'). Defaults to "pullup".
|
||
|
"""
|
||
|
|
||
|
# Image and line thickness
|
||
|
self.im0 = None
|
||
|
self.tf = line_thickness
|
||
|
|
||
|
# Keypoints and count information
|
||
|
self.keypoints = None
|
||
|
self.poseup_angle = pose_up_angle
|
||
|
self.posedown_angle = pose_down_angle
|
||
|
self.threshold = 0.001
|
||
|
|
||
|
# Store stage, count and angle information
|
||
|
self.angle = None
|
||
|
self.count = None
|
||
|
self.stage = None
|
||
|
self.pose_type = pose_type
|
||
|
self.kpts_to_check = kpts_to_check
|
||
|
|
||
|
# Visual Information
|
||
|
self.view_img = view_img
|
||
|
self.annotator = None
|
||
|
|
||
|
# Check if environment supports imshow
|
||
|
self.env_check = check_imshow(warn=True)
|
||
|
self.count = []
|
||
|
self.angle = []
|
||
|
self.stage = []
|
||
|
|
||
|
def start_counting(self, im0, results):
|
||
|
"""
|
||
|
Function used to count the gym steps.
|
||
|
|
||
|
Args:
|
||
|
im0 (ndarray): Current frame from the video stream.
|
||
|
results (list): Pose estimation data.
|
||
|
"""
|
||
|
|
||
|
self.im0 = im0
|
||
|
|
||
|
if not len(results[0]):
|
||
|
return self.im0
|
||
|
|
||
|
if len(results[0]) > len(self.count):
|
||
|
new_human = len(results[0]) - len(self.count)
|
||
|
self.count += [0] * new_human
|
||
|
self.angle += [0] * new_human
|
||
|
self.stage += ["-"] * new_human
|
||
|
|
||
|
self.keypoints = results[0].keypoints.data
|
||
|
self.annotator = Annotator(im0, line_width=self.tf)
|
||
|
|
||
|
for ind, k in enumerate(reversed(self.keypoints)):
|
||
|
# Estimate angle and draw specific points based on pose type
|
||
|
if self.pose_type in {"pushup", "pullup", "abworkout", "squat"}:
|
||
|
self.angle[ind] = self.annotator.estimate_pose_angle(
|
||
|
k[int(self.kpts_to_check[0])].cpu(),
|
||
|
k[int(self.kpts_to_check[1])].cpu(),
|
||
|
k[int(self.kpts_to_check[2])].cpu(),
|
||
|
)
|
||
|
self.im0 = self.annotator.draw_specific_points(k, self.kpts_to_check, shape=(640, 640), radius=10)
|
||
|
|
||
|
# Check and update pose stages and counts based on angle
|
||
|
if self.pose_type in {"abworkout", "pullup"}:
|
||
|
if self.angle[ind] > self.poseup_angle:
|
||
|
self.stage[ind] = "down"
|
||
|
if self.angle[ind] < self.posedown_angle and self.stage[ind] == "down":
|
||
|
self.stage[ind] = "up"
|
||
|
self.count[ind] += 1
|
||
|
|
||
|
elif self.pose_type in {"pushup", "squat"}:
|
||
|
if self.angle[ind] > self.poseup_angle:
|
||
|
self.stage[ind] = "up"
|
||
|
if self.angle[ind] < self.posedown_angle and self.stage[ind] == "up":
|
||
|
self.stage[ind] = "down"
|
||
|
self.count[ind] += 1
|
||
|
|
||
|
self.annotator.plot_angle_and_count_and_stage(
|
||
|
angle_text=self.angle[ind],
|
||
|
count_text=self.count[ind],
|
||
|
stage_text=self.stage[ind],
|
||
|
center_kpt=k[int(self.kpts_to_check[1])],
|
||
|
)
|
||
|
|
||
|
# Draw keypoints
|
||
|
self.annotator.kpts(k, shape=(640, 640), radius=1, kpt_line=True)
|
||
|
|
||
|
# Display the image if environment supports it and view_img is True
|
||
|
if self.env_check and self.view_img:
|
||
|
cv2.imshow("Ultralytics YOLOv8 AI GYM", self.im0)
|
||
|
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||
|
return
|
||
|
|
||
|
return self.im0
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
kpts_to_check = [0, 1, 2] # example keypoints
|
||
|
aigym = AIGym(kpts_to_check)
|