273 lines
9.9 KiB
Python
273 lines
9.9 KiB
Python
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||
|
|
||
|
import json
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
|
||
|
from ultralytics.utils.checks import check_imshow, check_requirements
|
||
|
from ultralytics.utils.plotting import Annotator
|
||
|
|
||
|
|
||
|
class ParkingPtsSelection:
|
||
|
"""Class for selecting and managing parking zone points on images using a Tkinter-based UI."""
|
||
|
|
||
|
def __init__(self):
|
||
|
"""Initializes the UI for selecting parking zone points in a tkinter window."""
|
||
|
check_requirements("tkinter")
|
||
|
|
||
|
import tkinter as tk # scope for multi-environment compatibility
|
||
|
|
||
|
self.tk = tk
|
||
|
self.master = tk.Tk()
|
||
|
self.master.title("Ultralytics Parking Zones Points Selector")
|
||
|
|
||
|
# Disable window resizing
|
||
|
self.master.resizable(False, False)
|
||
|
|
||
|
# Setup canvas for image display
|
||
|
self.canvas = self.tk.Canvas(self.master, bg="white")
|
||
|
|
||
|
# Setup buttons
|
||
|
button_frame = self.tk.Frame(self.master)
|
||
|
button_frame.pack(side=self.tk.TOP)
|
||
|
|
||
|
self.tk.Button(button_frame, text="Upload Image", command=self.upload_image).grid(row=0, column=0)
|
||
|
self.tk.Button(button_frame, text="Remove Last BBox", command=self.remove_last_bounding_box).grid(
|
||
|
row=0, column=1
|
||
|
)
|
||
|
self.tk.Button(button_frame, text="Save", command=self.save_to_json).grid(row=0, column=2)
|
||
|
|
||
|
# Initialize properties
|
||
|
self.image_path = None
|
||
|
self.image = None
|
||
|
self.canvas_image = None
|
||
|
self.bounding_boxes = []
|
||
|
self.current_box = []
|
||
|
self.img_width = 0
|
||
|
self.img_height = 0
|
||
|
|
||
|
# Constants
|
||
|
self.canvas_max_width = 1280
|
||
|
self.canvas_max_height = 720
|
||
|
|
||
|
self.master.mainloop()
|
||
|
|
||
|
def upload_image(self):
|
||
|
"""Upload an image and resize it to fit canvas."""
|
||
|
from tkinter import filedialog
|
||
|
|
||
|
from PIL import Image, ImageTk # scope because ImageTk requires tkinter package
|
||
|
|
||
|
self.image_path = filedialog.askopenfilename(filetypes=[("Image Files", "*.png;*.jpg;*.jpeg")])
|
||
|
if not self.image_path:
|
||
|
return
|
||
|
|
||
|
self.image = Image.open(self.image_path)
|
||
|
self.img_width, self.img_height = self.image.size
|
||
|
|
||
|
# Calculate the aspect ratio and resize image
|
||
|
aspect_ratio = self.img_width / self.img_height
|
||
|
if aspect_ratio > 1:
|
||
|
# Landscape orientation
|
||
|
canvas_width = min(self.canvas_max_width, self.img_width)
|
||
|
canvas_height = int(canvas_width / aspect_ratio)
|
||
|
else:
|
||
|
# Portrait orientation
|
||
|
canvas_height = min(self.canvas_max_height, self.img_height)
|
||
|
canvas_width = int(canvas_height * aspect_ratio)
|
||
|
|
||
|
# Check if canvas is already initialized
|
||
|
if self.canvas:
|
||
|
self.canvas.destroy() # Destroy previous canvas
|
||
|
|
||
|
self.canvas = self.tk.Canvas(self.master, bg="white", width=canvas_width, height=canvas_height)
|
||
|
resized_image = self.image.resize((canvas_width, canvas_height), Image.LANCZOS)
|
||
|
self.canvas_image = ImageTk.PhotoImage(resized_image)
|
||
|
self.canvas.create_image(0, 0, anchor=self.tk.NW, image=self.canvas_image)
|
||
|
|
||
|
self.canvas.pack(side=self.tk.BOTTOM)
|
||
|
self.canvas.bind("<Button-1>", self.on_canvas_click)
|
||
|
|
||
|
# Reset bounding boxes and current box
|
||
|
self.bounding_boxes = []
|
||
|
self.current_box = []
|
||
|
|
||
|
def on_canvas_click(self, event):
|
||
|
"""Handle mouse clicks on canvas to create points for bounding boxes."""
|
||
|
self.current_box.append((event.x, event.y))
|
||
|
x0, y0 = event.x - 3, event.y - 3
|
||
|
x1, y1 = event.x + 3, event.y + 3
|
||
|
self.canvas.create_oval(x0, y0, x1, y1, fill="red")
|
||
|
|
||
|
if len(self.current_box) == 4:
|
||
|
self.bounding_boxes.append(self.current_box)
|
||
|
self.draw_bounding_box(self.current_box)
|
||
|
self.current_box = []
|
||
|
|
||
|
def draw_bounding_box(self, box):
|
||
|
"""
|
||
|
Draw bounding box on canvas.
|
||
|
|
||
|
Args:
|
||
|
box (list): Bounding box data
|
||
|
"""
|
||
|
for i in range(4):
|
||
|
x1, y1 = box[i]
|
||
|
x2, y2 = box[(i + 1) % 4]
|
||
|
self.canvas.create_line(x1, y1, x2, y2, fill="blue", width=2)
|
||
|
|
||
|
def remove_last_bounding_box(self):
|
||
|
"""Remove the last drawn bounding box from canvas."""
|
||
|
from tkinter import messagebox # scope for multi-environment compatibility
|
||
|
|
||
|
if self.bounding_boxes:
|
||
|
self.bounding_boxes.pop() # Remove the last bounding box
|
||
|
self.canvas.delete("all") # Clear the canvas
|
||
|
self.canvas.create_image(0, 0, anchor=self.tk.NW, image=self.canvas_image) # Redraw the image
|
||
|
|
||
|
# Redraw all bounding boxes
|
||
|
for box in self.bounding_boxes:
|
||
|
self.draw_bounding_box(box)
|
||
|
|
||
|
messagebox.showinfo("Success", "Last bounding box removed.")
|
||
|
else:
|
||
|
messagebox.showwarning("Warning", "No bounding boxes to remove.")
|
||
|
|
||
|
def save_to_json(self):
|
||
|
"""Saves rescaled bounding boxes to 'bounding_boxes.json' based on image-to-canvas size ratio."""
|
||
|
from tkinter import messagebox # scope for multi-environment compatibility
|
||
|
|
||
|
canvas_width, canvas_height = self.canvas.winfo_width(), self.canvas.winfo_height()
|
||
|
width_scaling_factor = self.img_width / canvas_width
|
||
|
height_scaling_factor = self.img_height / canvas_height
|
||
|
bounding_boxes_data = []
|
||
|
for box in self.bounding_boxes:
|
||
|
rescaled_box = []
|
||
|
for x, y in box:
|
||
|
rescaled_x = int(x * width_scaling_factor)
|
||
|
rescaled_y = int(y * height_scaling_factor)
|
||
|
rescaled_box.append((rescaled_x, rescaled_y))
|
||
|
bounding_boxes_data.append({"points": rescaled_box})
|
||
|
with open("bounding_boxes.json", "w") as f:
|
||
|
json.dump(bounding_boxes_data, f, indent=4)
|
||
|
|
||
|
messagebox.showinfo("Success", "Bounding boxes saved to bounding_boxes.json")
|
||
|
|
||
|
|
||
|
class ParkingManagement:
|
||
|
"""Manages parking occupancy and availability using YOLOv8 for real-time monitoring and visualization."""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
model_path,
|
||
|
txt_color=(0, 0, 0),
|
||
|
bg_color=(255, 255, 255),
|
||
|
occupied_region_color=(0, 255, 0),
|
||
|
available_region_color=(0, 0, 255),
|
||
|
margin=10,
|
||
|
):
|
||
|
"""
|
||
|
Initializes the parking management system with a YOLOv8 model and visualization settings.
|
||
|
|
||
|
Args:
|
||
|
model_path (str): Path to the YOLOv8 model.
|
||
|
txt_color (tuple): RGB color tuple for text.
|
||
|
bg_color (tuple): RGB color tuple for background.
|
||
|
occupied_region_color (tuple): RGB color tuple for occupied regions.
|
||
|
available_region_color (tuple): RGB color tuple for available regions.
|
||
|
margin (int): Margin for text display.
|
||
|
"""
|
||
|
# Model path and initialization
|
||
|
self.model_path = model_path
|
||
|
self.model = self.load_model()
|
||
|
|
||
|
# Labels dictionary
|
||
|
self.labels_dict = {"Occupancy": 0, "Available": 0}
|
||
|
|
||
|
# Visualization details
|
||
|
self.margin = margin
|
||
|
self.bg_color = bg_color
|
||
|
self.txt_color = txt_color
|
||
|
self.occupied_region_color = occupied_region_color
|
||
|
self.available_region_color = available_region_color
|
||
|
|
||
|
self.window_name = "Ultralytics YOLOv8 Parking Management System"
|
||
|
# Check if environment supports imshow
|
||
|
self.env_check = check_imshow(warn=True)
|
||
|
|
||
|
def load_model(self):
|
||
|
"""Load the Ultralytics YOLO model for inference and analytics."""
|
||
|
from ultralytics import YOLO
|
||
|
|
||
|
return YOLO(self.model_path)
|
||
|
|
||
|
@staticmethod
|
||
|
def parking_regions_extraction(json_file):
|
||
|
"""
|
||
|
Extract parking regions from json file.
|
||
|
|
||
|
Args:
|
||
|
json_file (str): file that have all parking slot points
|
||
|
"""
|
||
|
with open(json_file, "r") as f:
|
||
|
return json.load(f)
|
||
|
|
||
|
def process_data(self, json_data, im0, boxes, clss):
|
||
|
"""
|
||
|
Process the model data for parking lot management.
|
||
|
|
||
|
Args:
|
||
|
json_data (str): json data for parking lot management
|
||
|
im0 (ndarray): inference image
|
||
|
boxes (list): bounding boxes data
|
||
|
clss (list): bounding boxes classes list
|
||
|
|
||
|
Returns:
|
||
|
filled_slots (int): total slots that are filled in parking lot
|
||
|
empty_slots (int): total slots that are available in parking lot
|
||
|
"""
|
||
|
annotator = Annotator(im0)
|
||
|
empty_slots, filled_slots = len(json_data), 0
|
||
|
for region in json_data:
|
||
|
points_array = np.array(region["points"], dtype=np.int32).reshape((-1, 1, 2))
|
||
|
region_occupied = False
|
||
|
|
||
|
for box, cls in zip(boxes, clss):
|
||
|
x_center = int((box[0] + box[2]) / 2)
|
||
|
y_center = int((box[1] + box[3]) / 2)
|
||
|
text = f"{self.model.names[int(cls)]}"
|
||
|
|
||
|
annotator.display_objects_labels(
|
||
|
im0, text, self.txt_color, self.bg_color, x_center, y_center, self.margin
|
||
|
)
|
||
|
dist = cv2.pointPolygonTest(points_array, (x_center, y_center), False)
|
||
|
if dist >= 0:
|
||
|
region_occupied = True
|
||
|
break
|
||
|
|
||
|
color = self.occupied_region_color if region_occupied else self.available_region_color
|
||
|
cv2.polylines(im0, [points_array], isClosed=True, color=color, thickness=2)
|
||
|
if region_occupied:
|
||
|
filled_slots += 1
|
||
|
empty_slots -= 1
|
||
|
|
||
|
self.labels_dict["Occupancy"] = filled_slots
|
||
|
self.labels_dict["Available"] = empty_slots
|
||
|
|
||
|
annotator.display_analytics(im0, self.labels_dict, self.txt_color, self.bg_color, self.margin)
|
||
|
|
||
|
def display_frames(self, im0):
|
||
|
"""
|
||
|
Display frame.
|
||
|
|
||
|
Args:
|
||
|
im0 (ndarray): inference image
|
||
|
"""
|
||
|
if self.env_check:
|
||
|
cv2.namedWindow(self.window_name)
|
||
|
cv2.imshow(self.window_name, im0)
|
||
|
# Break Window
|
||
|
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||
|
return
|