license-plate-detect/ultralytics/solutions/parking_management.py

273 lines
9.9 KiB
Python
Raw Normal View History

2024-08-26 20:19:30 +08:00
# Ultralytics YOLO 🚀, AGPL-3.0 license
import json
import cv2
import numpy as np
from ultralytics.utils.checks import check_imshow, check_requirements
from ultralytics.utils.plotting import Annotator
class ParkingPtsSelection:
"""Class for selecting and managing parking zone points on images using a Tkinter-based UI."""
def __init__(self):
"""Initializes the UI for selecting parking zone points in a tkinter window."""
check_requirements("tkinter")
import tkinter as tk # scope for multi-environment compatibility
self.tk = tk
self.master = tk.Tk()
self.master.title("Ultralytics Parking Zones Points Selector")
# Disable window resizing
self.master.resizable(False, False)
# Setup canvas for image display
self.canvas = self.tk.Canvas(self.master, bg="white")
# Setup buttons
button_frame = self.tk.Frame(self.master)
button_frame.pack(side=self.tk.TOP)
self.tk.Button(button_frame, text="Upload Image", command=self.upload_image).grid(row=0, column=0)
self.tk.Button(button_frame, text="Remove Last BBox", command=self.remove_last_bounding_box).grid(
row=0, column=1
)
self.tk.Button(button_frame, text="Save", command=self.save_to_json).grid(row=0, column=2)
# Initialize properties
self.image_path = None
self.image = None
self.canvas_image = None
self.bounding_boxes = []
self.current_box = []
self.img_width = 0
self.img_height = 0
# Constants
self.canvas_max_width = 1280
self.canvas_max_height = 720
self.master.mainloop()
def upload_image(self):
"""Upload an image and resize it to fit canvas."""
from tkinter import filedialog
from PIL import Image, ImageTk # scope because ImageTk requires tkinter package
self.image_path = filedialog.askopenfilename(filetypes=[("Image Files", "*.png;*.jpg;*.jpeg")])
if not self.image_path:
return
self.image = Image.open(self.image_path)
self.img_width, self.img_height = self.image.size
# Calculate the aspect ratio and resize image
aspect_ratio = self.img_width / self.img_height
if aspect_ratio > 1:
# Landscape orientation
canvas_width = min(self.canvas_max_width, self.img_width)
canvas_height = int(canvas_width / aspect_ratio)
else:
# Portrait orientation
canvas_height = min(self.canvas_max_height, self.img_height)
canvas_width = int(canvas_height * aspect_ratio)
# Check if canvas is already initialized
if self.canvas:
self.canvas.destroy() # Destroy previous canvas
self.canvas = self.tk.Canvas(self.master, bg="white", width=canvas_width, height=canvas_height)
resized_image = self.image.resize((canvas_width, canvas_height), Image.LANCZOS)
self.canvas_image = ImageTk.PhotoImage(resized_image)
self.canvas.create_image(0, 0, anchor=self.tk.NW, image=self.canvas_image)
self.canvas.pack(side=self.tk.BOTTOM)
self.canvas.bind("<Button-1>", self.on_canvas_click)
# Reset bounding boxes and current box
self.bounding_boxes = []
self.current_box = []
def on_canvas_click(self, event):
"""Handle mouse clicks on canvas to create points for bounding boxes."""
self.current_box.append((event.x, event.y))
x0, y0 = event.x - 3, event.y - 3
x1, y1 = event.x + 3, event.y + 3
self.canvas.create_oval(x0, y0, x1, y1, fill="red")
if len(self.current_box) == 4:
self.bounding_boxes.append(self.current_box)
self.draw_bounding_box(self.current_box)
self.current_box = []
def draw_bounding_box(self, box):
"""
Draw bounding box on canvas.
Args:
box (list): Bounding box data
"""
for i in range(4):
x1, y1 = box[i]
x2, y2 = box[(i + 1) % 4]
self.canvas.create_line(x1, y1, x2, y2, fill="blue", width=2)
def remove_last_bounding_box(self):
"""Remove the last drawn bounding box from canvas."""
from tkinter import messagebox # scope for multi-environment compatibility
if self.bounding_boxes:
self.bounding_boxes.pop() # Remove the last bounding box
self.canvas.delete("all") # Clear the canvas
self.canvas.create_image(0, 0, anchor=self.tk.NW, image=self.canvas_image) # Redraw the image
# Redraw all bounding boxes
for box in self.bounding_boxes:
self.draw_bounding_box(box)
messagebox.showinfo("Success", "Last bounding box removed.")
else:
messagebox.showwarning("Warning", "No bounding boxes to remove.")
def save_to_json(self):
"""Saves rescaled bounding boxes to 'bounding_boxes.json' based on image-to-canvas size ratio."""
from tkinter import messagebox # scope for multi-environment compatibility
canvas_width, canvas_height = self.canvas.winfo_width(), self.canvas.winfo_height()
width_scaling_factor = self.img_width / canvas_width
height_scaling_factor = self.img_height / canvas_height
bounding_boxes_data = []
for box in self.bounding_boxes:
rescaled_box = []
for x, y in box:
rescaled_x = int(x * width_scaling_factor)
rescaled_y = int(y * height_scaling_factor)
rescaled_box.append((rescaled_x, rescaled_y))
bounding_boxes_data.append({"points": rescaled_box})
with open("bounding_boxes.json", "w") as f:
json.dump(bounding_boxes_data, f, indent=4)
messagebox.showinfo("Success", "Bounding boxes saved to bounding_boxes.json")
class ParkingManagement:
"""Manages parking occupancy and availability using YOLOv8 for real-time monitoring and visualization."""
def __init__(
self,
model_path,
txt_color=(0, 0, 0),
bg_color=(255, 255, 255),
occupied_region_color=(0, 255, 0),
available_region_color=(0, 0, 255),
margin=10,
):
"""
Initializes the parking management system with a YOLOv8 model and visualization settings.
Args:
model_path (str): Path to the YOLOv8 model.
txt_color (tuple): RGB color tuple for text.
bg_color (tuple): RGB color tuple for background.
occupied_region_color (tuple): RGB color tuple for occupied regions.
available_region_color (tuple): RGB color tuple for available regions.
margin (int): Margin for text display.
"""
# Model path and initialization
self.model_path = model_path
self.model = self.load_model()
# Labels dictionary
self.labels_dict = {"Occupancy": 0, "Available": 0}
# Visualization details
self.margin = margin
self.bg_color = bg_color
self.txt_color = txt_color
self.occupied_region_color = occupied_region_color
self.available_region_color = available_region_color
self.window_name = "Ultralytics YOLOv8 Parking Management System"
# Check if environment supports imshow
self.env_check = check_imshow(warn=True)
def load_model(self):
"""Load the Ultralytics YOLO model for inference and analytics."""
from ultralytics import YOLO
return YOLO(self.model_path)
@staticmethod
def parking_regions_extraction(json_file):
"""
Extract parking regions from json file.
Args:
json_file (str): file that have all parking slot points
"""
with open(json_file, "r") as f:
return json.load(f)
def process_data(self, json_data, im0, boxes, clss):
"""
Process the model data for parking lot management.
Args:
json_data (str): json data for parking lot management
im0 (ndarray): inference image
boxes (list): bounding boxes data
clss (list): bounding boxes classes list
Returns:
filled_slots (int): total slots that are filled in parking lot
empty_slots (int): total slots that are available in parking lot
"""
annotator = Annotator(im0)
empty_slots, filled_slots = len(json_data), 0
for region in json_data:
points_array = np.array(region["points"], dtype=np.int32).reshape((-1, 1, 2))
region_occupied = False
for box, cls in zip(boxes, clss):
x_center = int((box[0] + box[2]) / 2)
y_center = int((box[1] + box[3]) / 2)
text = f"{self.model.names[int(cls)]}"
annotator.display_objects_labels(
im0, text, self.txt_color, self.bg_color, x_center, y_center, self.margin
)
dist = cv2.pointPolygonTest(points_array, (x_center, y_center), False)
if dist >= 0:
region_occupied = True
break
color = self.occupied_region_color if region_occupied else self.available_region_color
cv2.polylines(im0, [points_array], isClosed=True, color=color, thickness=2)
if region_occupied:
filled_slots += 1
empty_slots -= 1
self.labels_dict["Occupancy"] = filled_slots
self.labels_dict["Available"] = empty_slots
annotator.display_analytics(im0, self.labels_dict, self.txt_color, self.bg_color, self.margin)
def display_frames(self, im0):
"""
Display frame.
Args:
im0 (ndarray): inference image
"""
if self.env_check:
cv2.namedWindow(self.window_name)
cv2.imshow(self.window_name, im0)
# Break Window
if cv2.waitKey(1) & 0xFF == ord("q"):
return