license-plate-detect/ultralytics/solutions/queue_management.py

169 lines
6.6 KiB
Python
Raw Normal View History

2024-08-26 20:19:30 +08:00
# Ultralytics YOLO 🚀, AGPL-3.0 license
from collections import defaultdict
import cv2
from ultralytics.utils.checks import check_imshow, check_requirements
from ultralytics.utils.plotting import Annotator, colors
check_requirements("shapely>=2.0.0")
from shapely.geometry import Point, Polygon
class QueueManager:
"""A class to manage the queue in a real-time video stream based on object tracks."""
def __init__(
self,
names,
reg_pts=None,
line_thickness=2,
track_thickness=2,
view_img=False,
region_color=(255, 0, 255),
view_queue_counts=True,
draw_tracks=False,
count_txt_color=(255, 255, 255),
track_color=None,
region_thickness=5,
fontsize=0.7,
):
"""
Initializes the QueueManager with specified parameters for tracking and counting objects.
Args:
names (dict): A dictionary mapping class IDs to class names.
reg_pts (list of tuples, optional): Points defining the counting region polygon. Defaults to a predefined
rectangle.
line_thickness (int, optional): Thickness of the annotation lines. Defaults to 2.
track_thickness (int, optional): Thickness of the track lines. Defaults to 2.
view_img (bool, optional): Whether to display the image frames. Defaults to False.
region_color (tuple, optional): Color of the counting region lines (BGR). Defaults to (255, 0, 255).
view_queue_counts (bool, optional): Whether to display the queue counts. Defaults to True.
draw_tracks (bool, optional): Whether to draw tracks of the objects. Defaults to False.
count_txt_color (tuple, optional): Color of the count text (BGR). Defaults to (255, 255, 255).
track_color (tuple, optional): Color of the tracks. If None, different colors will be used for different
tracks. Defaults to None.
region_thickness (int, optional): Thickness of the counting region lines. Defaults to 5.
fontsize (float, optional): Font size for the text annotations. Defaults to 0.7.
"""
# Mouse events state
self.is_drawing = False
self.selected_point = None
# Region & Line Information
self.reg_pts = reg_pts if reg_pts is not None else [(20, 60), (20, 680), (1120, 680), (1120, 60)]
self.counting_region = (
Polygon(self.reg_pts) if len(self.reg_pts) >= 3 else Polygon([(20, 60), (20, 680), (1120, 680), (1120, 60)])
)
self.region_color = region_color
self.region_thickness = region_thickness
# Image and annotation Information
self.im0 = None
self.tf = line_thickness
self.view_img = view_img
self.view_queue_counts = view_queue_counts
self.fontsize = fontsize
self.names = names # Class names
self.annotator = None # Annotator
self.window_name = "Ultralytics YOLOv8 Queue Manager"
# Object counting Information
self.counts = 0
self.count_txt_color = count_txt_color
# Tracks info
self.track_history = defaultdict(list)
self.track_thickness = track_thickness
self.draw_tracks = draw_tracks
self.track_color = track_color
# Check if environment supports imshow
self.env_check = check_imshow(warn=True)
def extract_and_process_tracks(self, tracks):
"""Extracts and processes tracks for queue management in a video stream."""
# Initialize annotator and draw the queue region
self.annotator = Annotator(self.im0, self.tf, self.names)
if tracks[0].boxes.id is not None:
boxes = tracks[0].boxes.xyxy.cpu()
clss = tracks[0].boxes.cls.cpu().tolist()
track_ids = tracks[0].boxes.id.int().cpu().tolist()
# Extract tracks
for box, track_id, cls in zip(boxes, track_ids, clss):
# Draw bounding box
self.annotator.box_label(box, label=f"{self.names[cls]}#{track_id}", color=colors(int(track_id), True))
# Update track history
track_line = self.track_history[track_id]
track_line.append((float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2)))
if len(track_line) > 30:
track_line.pop(0)
# Draw track trails if enabled
if self.draw_tracks:
self.annotator.draw_centroid_and_tracks(
track_line,
color=self.track_color or colors(int(track_id), True),
track_thickness=self.track_thickness,
)
prev_position = self.track_history[track_id][-2] if len(self.track_history[track_id]) > 1 else None
# Check if the object is inside the counting region
if len(self.reg_pts) >= 3:
is_inside = self.counting_region.contains(Point(track_line[-1]))
if prev_position is not None and is_inside:
self.counts += 1
# Display queue counts
label = f"Queue Counts : {str(self.counts)}"
if label is not None:
self.annotator.queue_counts_display(
label,
points=self.reg_pts,
region_color=self.region_color,
txt_color=self.count_txt_color,
)
self.counts = 0 # Reset counts after displaying
self.display_frames()
def display_frames(self):
"""Displays the current frame with annotations."""
if self.env_check and self.view_img:
self.annotator.draw_region(reg_pts=self.reg_pts, thickness=self.region_thickness, color=self.region_color)
cv2.namedWindow(self.window_name)
cv2.imshow(self.window_name, self.im0)
# Close window on 'q' key press
if cv2.waitKey(1) & 0xFF == ord("q"):
return
def process_queue(self, im0, tracks):
"""
Main function to start the queue management process.
Args:
im0 (ndarray): Current frame from the video stream.
tracks (list): List of tracks obtained from the object tracking process.
"""
self.im0 = im0 # Store the current frame
self.extract_and_process_tracks(tracks) # Extract and process tracks
if self.view_img:
self.display_frames() # Display the frame if enabled
return self.im0
if __name__ == "__main__":
classes_names = {0: "person", 1: "car"} # example class names
queue_manager = QueueManager(classes_names)