# Ultralytics YOLO 🚀, AGPL-3.0 license """ Export a YOLOv8 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit Format | `format=argument` | Model --- | --- | --- PyTorch | - | yolov8n.pt TorchScript | `torchscript` | yolov8n.torchscript ONNX | `onnx` | yolov8n.onnx OpenVINO | `openvino` | yolov8n_openvino_model/ TensorRT | `engine` | yolov8n.engine CoreML | `coreml` | yolov8n.mlpackage TensorFlow SavedModel | `saved_model` | yolov8n_saved_model/ TensorFlow GraphDef | `pb` | yolov8n.pb TensorFlow Lite | `tflite` | yolov8n.tflite TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite TensorFlow.js | `tfjs` | yolov8n_web_model/ PaddlePaddle | `paddle` | yolov8n_paddle_model/ NCNN | `ncnn` | yolov8n_ncnn_model/ Requirements: $ pip install "ultralytics[export]" Python: from ultralytics import YOLO model = YOLO('yolov8n.pt') results = model.export(format='onnx') CLI: $ yolo mode=export model=yolov8n.pt format=onnx Inference: $ yolo predict model=yolov8n.pt # PyTorch yolov8n.torchscript # TorchScript yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True yolov8n_openvino_model # OpenVINO yolov8n.engine # TensorRT yolov8n.mlpackage # CoreML (macOS-only) yolov8n_saved_model # TensorFlow SavedModel yolov8n.pb # TensorFlow GraphDef yolov8n.tflite # TensorFlow Lite yolov8n_edgetpu.tflite # TensorFlow Edge TPU yolov8n_paddle_model # PaddlePaddle yolov8n_ncnn_model # NCNN TensorFlow.js: $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example $ npm install $ ln -s ../../yolov5/yolov8n_web_model public/yolov8n_web_model $ npm start """ import gc import json import os import shutil import subprocess import time import warnings from copy import deepcopy from datetime import datetime from pathlib import Path import numpy as np import torch from ultralytics.cfg import TASK2DATA, get_cfg from ultralytics.data import build_dataloader from ultralytics.data.dataset import YOLODataset from ultralytics.data.utils import check_cls_dataset, check_det_dataset from ultralytics.nn.autobackend import check_class_names, default_class_names from ultralytics.nn.modules import C2f, Detect, RTDETRDecoder from ultralytics.nn.tasks import DetectionModel, SegmentationModel, WorldModel from ultralytics.utils import ( ARM64, DEFAULT_CFG, IS_JETSON, LINUX, LOGGER, MACOS, PYTHON_VERSION, ROOT, WINDOWS, __version__, callbacks, colorstr, get_default_args, yaml_save, ) from ultralytics.utils.checks import check_imgsz, check_is_path_safe, check_requirements, check_version from ultralytics.utils.downloads import attempt_download_asset, get_github_assets, safe_download from ultralytics.utils.files import file_size, spaces_in_path from ultralytics.utils.ops import Profile from ultralytics.utils.torch_utils import TORCH_1_13, get_latest_opset, select_device, smart_inference_mode def export_formats(): """YOLOv8 export formats.""" import pandas # scope for faster 'import ultralytics' x = [ ["PyTorch", "-", ".pt", True, True], ["TorchScript", "torchscript", ".torchscript", True, True], ["ONNX", "onnx", ".onnx", True, True], ["OpenVINO", "openvino", "_openvino_model", True, False], ["TensorRT", "engine", ".engine", False, True], ["CoreML", "coreml", ".mlpackage", True, False], ["TensorFlow SavedModel", "saved_model", "_saved_model", True, True], ["TensorFlow GraphDef", "pb", ".pb", True, True], ["TensorFlow Lite", "tflite", ".tflite", True, False], ["TensorFlow Edge TPU", "edgetpu", "_edgetpu.tflite", True, False], ["TensorFlow.js", "tfjs", "_web_model", True, False], ["PaddlePaddle", "paddle", "_paddle_model", True, True], ["NCNN", "ncnn", "_ncnn_model", True, True], ] return pandas.DataFrame(x, columns=["Format", "Argument", "Suffix", "CPU", "GPU"]) def gd_outputs(gd): """TensorFlow GraphDef model output node names.""" name_list, input_list = [], [] for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef name_list.append(node.name) input_list.extend(node.input) return sorted(f"{x}:0" for x in list(set(name_list) - set(input_list)) if not x.startswith("NoOp")) def try_export(inner_func): """YOLOv8 export decorator, i.e. @try_export.""" inner_args = get_default_args(inner_func) def outer_func(*args, **kwargs): """Export a model.""" prefix = inner_args["prefix"] try: with Profile() as dt: f, model = inner_func(*args, **kwargs) LOGGER.info(f"{prefix} export success ✅ {dt.t:.1f}s, saved as '{f}' ({file_size(f):.1f} MB)") return f, model except Exception as e: LOGGER.info(f"{prefix} export failure ❌ {dt.t:.1f}s: {e}") raise e return outer_func class Exporter: """ A class for exporting a model. Attributes: args (SimpleNamespace): Configuration for the exporter. callbacks (list, optional): List of callback functions. Defaults to None. """ def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): """ Initializes the Exporter class. Args: cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG. overrides (dict, optional): Configuration overrides. Defaults to None. _callbacks (dict, optional): Dictionary of callback functions. Defaults to None. """ self.args = get_cfg(cfg, overrides) if self.args.format.lower() in {"coreml", "mlmodel"}: # fix attempt for protobuf<3.20.x errors os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" # must run before TensorBoard callback self.callbacks = _callbacks or callbacks.get_default_callbacks() callbacks.add_integration_callbacks(self) @smart_inference_mode() def __call__(self, model=None) -> str: """Returns list of exported files/dirs after running callbacks.""" self.run_callbacks("on_export_start") t = time.time() fmt = self.args.format.lower() # to lowercase if fmt in {"tensorrt", "trt"}: # 'engine' aliases fmt = "engine" if fmt in {"mlmodel", "mlpackage", "mlprogram", "apple", "ios", "coreml"}: # 'coreml' aliases fmt = "coreml" fmts = tuple(export_formats()["Argument"][1:]) # available export formats flags = [x == fmt for x in fmts] if sum(flags) != 1: raise ValueError(f"Invalid export format='{fmt}'. Valid formats are {fmts}") jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, ncnn = flags # export booleans is_tf_format = any((saved_model, pb, tflite, edgetpu, tfjs)) # Device if fmt == "engine" and self.args.device is None: LOGGER.warning("WARNING ⚠️ TensorRT requires GPU export, automatically assigning device=0") self.args.device = "0" self.device = select_device("cpu" if self.args.device is None else self.args.device) # Checks if not hasattr(model, "names"): model.names = default_class_names() model.names = check_class_names(model.names) if self.args.half and self.args.int8: LOGGER.warning("WARNING ⚠️ half=True and int8=True are mutually exclusive, setting half=False.") self.args.half = False if self.args.half and onnx and self.device.type == "cpu": LOGGER.warning("WARNING ⚠️ half=True only compatible with GPU export, i.e. use device=0") self.args.half = False assert not self.args.dynamic, "half=True not compatible with dynamic=True, i.e. use only one." self.imgsz = check_imgsz(self.args.imgsz, stride=model.stride, min_dim=2) # check image size if self.args.int8 and (engine or xml): self.args.dynamic = True # enforce dynamic to export TensorRT INT8; ensures ONNX is dynamic if self.args.optimize: assert not ncnn, "optimize=True not compatible with format='ncnn', i.e. use optimize=False" assert self.device.type == "cpu", "optimize=True not compatible with cuda devices, i.e. use device='cpu'" if edgetpu: if not LINUX: raise SystemError("Edge TPU export only supported on Linux. See https://coral.ai/docs/edgetpu/compiler") elif self.args.batch != 1: # see github.com/ultralytics/ultralytics/pull/13420 LOGGER.warning("WARNING ⚠️ Edge TPU export requires batch size 1, setting batch=1.") self.args.batch = 1 if isinstance(model, WorldModel): LOGGER.warning( "WARNING ⚠️ YOLOWorld (original version) export is not supported to any format.\n" "WARNING ⚠️ YOLOWorldv2 models (i.e. 'yolov8s-worldv2.pt') only support export to " "(torchscript, onnx, openvino, engine, coreml) formats. " "See https://docs.ultralytics.com/models/yolo-world for details." ) if self.args.int8 and not self.args.data: self.args.data = DEFAULT_CFG.data or TASK2DATA[getattr(model, "task", "detect")] # assign default data LOGGER.warning( "WARNING ⚠️ INT8 export requires a missing 'data' arg for calibration. " f"Using default 'data={self.args.data}'." ) # Input im = torch.zeros(self.args.batch, 3, *self.imgsz).to(self.device) file = Path( getattr(model, "pt_path", None) or getattr(model, "yaml_file", None) or model.yaml.get("yaml_file", "") ) if file.suffix in {".yaml", ".yml"}: file = Path(file.name) # Update model model = deepcopy(model).to(self.device) for p in model.parameters(): p.requires_grad = False model.eval() model.float() model = model.fuse() for m in model.modules(): if isinstance(m, (Detect, RTDETRDecoder)): # includes all Detect subclasses like Segment, Pose, OBB m.dynamic = self.args.dynamic m.export = True m.format = self.args.format elif isinstance(m, C2f) and not is_tf_format: # EdgeTPU does not support FlexSplitV while split provides cleaner ONNX graph m.forward = m.forward_split y = None for _ in range(2): y = model(im) # dry runs if self.args.half and onnx and self.device.type != "cpu": im, model = im.half(), model.half() # to FP16 # Filter warnings warnings.filterwarnings("ignore", category=torch.jit.TracerWarning) # suppress TracerWarning warnings.filterwarnings("ignore", category=UserWarning) # suppress shape prim::Constant missing ONNX warning warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress CoreML np.bool deprecation warning # Assign self.im = im self.model = model self.file = file self.output_shape = ( tuple(y.shape) if isinstance(y, torch.Tensor) else tuple(tuple(x.shape if isinstance(x, torch.Tensor) else []) for x in y) ) self.pretty_name = Path(self.model.yaml.get("yaml_file", self.file)).stem.replace("yolo", "YOLO") data = model.args["data"] if hasattr(model, "args") and isinstance(model.args, dict) else "" description = f'Ultralytics {self.pretty_name} model {f"trained on {data}" if data else ""}' self.metadata = { "description": description, "author": "Ultralytics", "date": datetime.now().isoformat(), "version": __version__, "license": "AGPL-3.0 License (https://ultralytics.com/license)", "docs": "https://docs.ultralytics.com", "stride": int(max(model.stride)), "task": model.task, "batch": self.args.batch, "imgsz": self.imgsz, "names": model.names, } # model metadata if model.task == "pose": self.metadata["kpt_shape"] = model.model[-1].kpt_shape LOGGER.info( f"\n{colorstr('PyTorch:')} starting from '{file}' with input shape {tuple(im.shape)} BCHW and " f'output shape(s) {self.output_shape} ({file_size(file):.1f} MB)' ) # Exports f = [""] * len(fmts) # exported filenames if jit or ncnn: # TorchScript f[0], _ = self.export_torchscript() if engine: # TensorRT required before ONNX f[1], _ = self.export_engine() if onnx: # ONNX f[2], _ = self.export_onnx() if xml: # OpenVINO f[3], _ = self.export_openvino() if coreml: # CoreML f[4], _ = self.export_coreml() if is_tf_format: # TensorFlow formats self.args.int8 |= edgetpu f[5], keras_model = self.export_saved_model() if pb or tfjs: # pb prerequisite to tfjs f[6], _ = self.export_pb(keras_model=keras_model) if tflite: f[7], _ = self.export_tflite(keras_model=keras_model, nms=False, agnostic_nms=self.args.agnostic_nms) if edgetpu: f[8], _ = self.export_edgetpu(tflite_model=Path(f[5]) / f"{self.file.stem}_full_integer_quant.tflite") if tfjs: f[9], _ = self.export_tfjs() if paddle: # PaddlePaddle f[10], _ = self.export_paddle() if ncnn: # NCNN f[11], _ = self.export_ncnn() # Finish f = [str(x) for x in f if x] # filter out '' and None if any(f): f = str(Path(f[-1])) square = self.imgsz[0] == self.imgsz[1] s = ( "" if square else f"WARNING ⚠️ non-PyTorch val requires square images, 'imgsz={self.imgsz}' will not " f"work. Use export 'imgsz={max(self.imgsz)}' if val is required." ) imgsz = self.imgsz[0] if square else str(self.imgsz)[1:-1].replace(" ", "") predict_data = f"data={data}" if model.task == "segment" and fmt == "pb" else "" q = "int8" if self.args.int8 else "half" if self.args.half else "" # quantization LOGGER.info( f'\nExport complete ({time.time() - t:.1f}s)' f"\nResults saved to {colorstr('bold', file.parent.resolve())}" f'\nPredict: yolo predict task={model.task} model={f} imgsz={imgsz} {q} {predict_data}' f'\nValidate: yolo val task={model.task} model={f} imgsz={imgsz} data={data} {q} {s}' f'\nVisualize: https://netron.app' ) self.run_callbacks("on_export_end") return f # return list of exported files/dirs def get_int8_calibration_dataloader(self, prefix=""): """Build and return a dataloader suitable for calibration of INT8 models.""" LOGGER.info(f"{prefix} collecting INT8 calibration images from 'data={self.args.data}'") data = (check_cls_dataset if self.model.task == "classify" else check_det_dataset)(self.args.data) dataset = YOLODataset( data[self.args.split or "val"], data=data, task=self.model.task, imgsz=self.imgsz[0], augment=False, batch_size=self.args.batch * 2, # NOTE TensorRT INT8 calibration should use 2x batch size ) n = len(dataset) if n < 300: LOGGER.warning(f"{prefix} WARNING ⚠️ >300 images recommended for INT8 calibration, found {n} images.") return build_dataloader(dataset, batch=self.args.batch * 2, workers=0) # required for batch loading @try_export def export_torchscript(self, prefix=colorstr("TorchScript:")): """YOLOv8 TorchScript model export.""" LOGGER.info(f"\n{prefix} starting export with torch {torch.__version__}...") f = self.file.with_suffix(".torchscript") ts = torch.jit.trace(self.model, self.im, strict=False) extra_files = {"config.txt": json.dumps(self.metadata)} # torch._C.ExtraFilesMap() if self.args.optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html LOGGER.info(f"{prefix} optimizing for mobile...") from torch.utils.mobile_optimizer import optimize_for_mobile optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files) else: ts.save(str(f), _extra_files=extra_files) return f, None @try_export def export_onnx(self, prefix=colorstr("ONNX:")): """YOLOv8 ONNX export.""" requirements = ["onnx>=1.12.0"] if self.args.simplify: requirements += ["onnxslim>=0.1.31", "onnxruntime" + ("-gpu" if torch.cuda.is_available() else "")] check_requirements(requirements) import onnx # noqa opset_version = self.args.opset or get_latest_opset() LOGGER.info(f"\n{prefix} starting export with onnx {onnx.__version__} opset {opset_version}...") f = str(self.file.with_suffix(".onnx")) output_names = ["output0", "output1"] if isinstance(self.model, SegmentationModel) else ["output0"] dynamic = self.args.dynamic if dynamic: dynamic = {"images": {0: "batch", 2: "height", 3: "width"}} # shape(1,3,640,640) if isinstance(self.model, SegmentationModel): dynamic["output0"] = {0: "batch", 2: "anchors"} # shape(1, 116, 8400) dynamic["output1"] = {0: "batch", 2: "mask_height", 3: "mask_width"} # shape(1,32,160,160) elif isinstance(self.model, DetectionModel): dynamic["output0"] = {0: "batch", 2: "anchors"} # shape(1, 84, 8400) torch.onnx.export( self.model.cpu() if dynamic else self.model, # dynamic=True only compatible with cpu self.im.cpu() if dynamic else self.im, f, verbose=False, opset_version=opset_version, do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False input_names=["images"], output_names=output_names, dynamic_axes=dynamic or None, ) # Checks model_onnx = onnx.load(f) # load onnx model # onnx.checker.check_model(model_onnx) # check onnx model # Simplify if self.args.simplify: try: import onnxslim LOGGER.info(f"{prefix} slimming with onnxslim {onnxslim.__version__}...") model_onnx = onnxslim.slim(model_onnx) # ONNX Simplifier (deprecated as must be compiled with 'cmake' in aarch64 and Conda CI environments) # import onnxsim # model_onnx, check = onnxsim.simplify(model_onnx) # assert check, "Simplified ONNX model could not be validated" except Exception as e: LOGGER.warning(f"{prefix} simplifier failure: {e}") # Metadata for k, v in self.metadata.items(): meta = model_onnx.metadata_props.add() meta.key, meta.value = k, str(v) onnx.save(model_onnx, f) return f, model_onnx @try_export def export_openvino(self, prefix=colorstr("OpenVINO:")): """YOLOv8 OpenVINO export.""" check_requirements(f'openvino{"<=2024.0.0" if ARM64 else ">=2024.0.0"}') # fix OpenVINO issue on ARM64 import openvino as ov LOGGER.info(f"\n{prefix} starting export with openvino {ov.__version__}...") assert TORCH_1_13, f"OpenVINO export requires torch>=1.13.0 but torch=={torch.__version__} is installed" ov_model = ov.convert_model( self.model, input=None if self.args.dynamic else [self.im.shape], example_input=self.im, ) def serialize(ov_model, file): """Set RT info, serialize and save metadata YAML.""" ov_model.set_rt_info("YOLOv8", ["model_info", "model_type"]) ov_model.set_rt_info(True, ["model_info", "reverse_input_channels"]) ov_model.set_rt_info(114, ["model_info", "pad_value"]) ov_model.set_rt_info([255.0], ["model_info", "scale_values"]) ov_model.set_rt_info(self.args.iou, ["model_info", "iou_threshold"]) ov_model.set_rt_info([v.replace(" ", "_") for v in self.model.names.values()], ["model_info", "labels"]) if self.model.task != "classify": ov_model.set_rt_info("fit_to_window_letterbox", ["model_info", "resize_type"]) ov.runtime.save_model(ov_model, file, compress_to_fp16=self.args.half) yaml_save(Path(file).parent / "metadata.yaml", self.metadata) # add metadata.yaml if self.args.int8: fq = str(self.file).replace(self.file.suffix, f"_int8_openvino_model{os.sep}") fq_ov = str(Path(fq) / self.file.with_suffix(".xml").name) check_requirements("nncf>=2.8.0") import nncf def transform_fn(data_item) -> np.ndarray: """Quantization transform function.""" data_item: torch.Tensor = data_item["img"] if isinstance(data_item, dict) else data_item assert data_item.dtype == torch.uint8, "Input image must be uint8 for the quantization preprocessing" im = data_item.numpy().astype(np.float32) / 255.0 # uint8 to fp16/32 and 0 - 255 to 0.0 - 1.0 return np.expand_dims(im, 0) if im.ndim == 3 else im # Generate calibration data for integer quantization ignored_scope = None if isinstance(self.model.model[-1], Detect): # Includes all Detect subclasses like Segment, Pose, OBB, WorldDetect head_module_name = ".".join(list(self.model.named_modules())[-1][0].split(".")[:2]) ignored_scope = nncf.IgnoredScope( # ignore operations patterns=[ f".*{head_module_name}/.*/Add", f".*{head_module_name}/.*/Sub*", f".*{head_module_name}/.*/Mul*", f".*{head_module_name}/.*/Div*", f".*{head_module_name}\\.dfl.*", ], types=["Sigmoid"], ) quantized_ov_model = nncf.quantize( model=ov_model, calibration_dataset=nncf.Dataset(self.get_int8_calibration_dataloader(prefix), transform_fn), preset=nncf.QuantizationPreset.MIXED, ignored_scope=ignored_scope, ) serialize(quantized_ov_model, fq_ov) return fq, None f = str(self.file).replace(self.file.suffix, f"_openvino_model{os.sep}") f_ov = str(Path(f) / self.file.with_suffix(".xml").name) serialize(ov_model, f_ov) return f, None @try_export def export_paddle(self, prefix=colorstr("PaddlePaddle:")): """YOLOv8 Paddle export.""" check_requirements(("paddlepaddle", "x2paddle")) import x2paddle # noqa from x2paddle.convert import pytorch2paddle # noqa LOGGER.info(f"\n{prefix} starting export with X2Paddle {x2paddle.__version__}...") f = str(self.file).replace(self.file.suffix, f"_paddle_model{os.sep}") pytorch2paddle(module=self.model, save_dir=f, jit_type="trace", input_examples=[self.im]) # export yaml_save(Path(f) / "metadata.yaml", self.metadata) # add metadata.yaml return f, None @try_export def export_ncnn(self, prefix=colorstr("NCNN:")): """ YOLOv8 NCNN export using PNNX https://github.com/pnnx/pnnx. """ check_requirements("ncnn") import ncnn # noqa LOGGER.info(f"\n{prefix} starting export with NCNN {ncnn.__version__}...") f = Path(str(self.file).replace(self.file.suffix, f"_ncnn_model{os.sep}")) f_ts = self.file.with_suffix(".torchscript") name = Path("pnnx.exe" if WINDOWS else "pnnx") # PNNX filename pnnx = name if name.is_file() else (ROOT / name) if not pnnx.is_file(): LOGGER.warning( f"{prefix} WARNING ⚠️ PNNX not found. Attempting to download binary file from " "https://github.com/pnnx/pnnx/.\nNote PNNX Binary file must be placed in current working directory " f"or in {ROOT}. See PNNX repo for full installation instructions." ) system = "macos" if MACOS else "windows" if WINDOWS else "linux-aarch64" if ARM64 else "linux" try: release, assets = get_github_assets(repo="pnnx/pnnx") asset = [x for x in assets if f"{system}.zip" in x][0] assert isinstance(asset, str), "Unable to retrieve PNNX repo assets" # i.e. pnnx-20240410-macos.zip LOGGER.info(f"{prefix} successfully found latest PNNX asset file {asset}") except Exception as e: release = "20240410" asset = f"pnnx-{release}-{system}.zip" LOGGER.warning(f"{prefix} WARNING ⚠️ PNNX GitHub assets not found: {e}, using default {asset}") unzip_dir = safe_download(f"https://github.com/pnnx/pnnx/releases/download/{release}/{asset}", delete=True) if check_is_path_safe(Path.cwd(), unzip_dir): # avoid path traversal security vulnerability shutil.move(src=unzip_dir / name, dst=pnnx) # move binary to ROOT pnnx.chmod(0o777) # set read, write, and execute permissions for everyone shutil.rmtree(unzip_dir) # delete unzip dir ncnn_args = [ f'ncnnparam={f / "model.ncnn.param"}', f'ncnnbin={f / "model.ncnn.bin"}', f'ncnnpy={f / "model_ncnn.py"}', ] pnnx_args = [ f'pnnxparam={f / "model.pnnx.param"}', f'pnnxbin={f / "model.pnnx.bin"}', f'pnnxpy={f / "model_pnnx.py"}', f'pnnxonnx={f / "model.pnnx.onnx"}', ] cmd = [ str(pnnx), str(f_ts), *ncnn_args, *pnnx_args, f"fp16={int(self.args.half)}", f"device={self.device.type}", f'inputshape="{[self.args.batch, 3, *self.imgsz]}"', ] f.mkdir(exist_ok=True) # make ncnn_model directory LOGGER.info(f"{prefix} running '{' '.join(cmd)}'") subprocess.run(cmd, check=True) # Remove debug files pnnx_files = [x.split("=")[-1] for x in pnnx_args] for f_debug in ("debug.bin", "debug.param", "debug2.bin", "debug2.param", *pnnx_files): Path(f_debug).unlink(missing_ok=True) yaml_save(f / "metadata.yaml", self.metadata) # add metadata.yaml return str(f), None @try_export def export_coreml(self, prefix=colorstr("CoreML:")): """YOLOv8 CoreML export.""" mlmodel = self.args.format.lower() == "mlmodel" # legacy *.mlmodel export format requested check_requirements("coremltools>=6.0,<=6.2" if mlmodel else "coremltools>=7.0") import coremltools as ct # noqa LOGGER.info(f"\n{prefix} starting export with coremltools {ct.__version__}...") assert not WINDOWS, "CoreML export is not supported on Windows, please run on macOS or Linux." assert self.args.batch == 1, "CoreML batch sizes > 1 are not supported. Please retry at 'batch=1'." f = self.file.with_suffix(".mlmodel" if mlmodel else ".mlpackage") if f.is_dir(): shutil.rmtree(f) bias = [0.0, 0.0, 0.0] scale = 1 / 255 classifier_config = None if self.model.task == "classify": classifier_config = ct.ClassifierConfig(list(self.model.names.values())) if self.args.nms else None model = self.model elif self.model.task == "detect": model = IOSDetectModel(self.model, self.im) if self.args.nms else self.model else: if self.args.nms: LOGGER.warning(f"{prefix} WARNING ⚠️ 'nms=True' is only available for Detect models like 'yolov8n.pt'.") # TODO CoreML Segment and Pose model pipelining model = self.model ts = torch.jit.trace(model.eval(), self.im, strict=False) # TorchScript model ct_model = ct.convert( ts, inputs=[ct.ImageType("image", shape=self.im.shape, scale=scale, bias=bias)], classifier_config=classifier_config, convert_to="neuralnetwork" if mlmodel else "mlprogram", ) bits, mode = (8, "kmeans") if self.args.int8 else (16, "linear") if self.args.half else (32, None) if bits < 32: if "kmeans" in mode: check_requirements("scikit-learn") # scikit-learn package required for k-means quantization if mlmodel: ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode) elif bits == 8: # mlprogram already quantized to FP16 import coremltools.optimize.coreml as cto op_config = cto.OpPalettizerConfig(mode="kmeans", nbits=bits, weight_threshold=512) config = cto.OptimizationConfig(global_config=op_config) ct_model = cto.palettize_weights(ct_model, config=config) if self.args.nms and self.model.task == "detect": if mlmodel: # coremltools<=6.2 NMS export requires Python<3.11 check_version(PYTHON_VERSION, "<3.11", name="Python ", hard=True) weights_dir = None else: ct_model.save(str(f)) # save otherwise weights_dir does not exist weights_dir = str(f / "Data/com.apple.CoreML/weights") ct_model = self._pipeline_coreml(ct_model, weights_dir=weights_dir) m = self.metadata # metadata dict ct_model.short_description = m.pop("description") ct_model.author = m.pop("author") ct_model.license = m.pop("license") ct_model.version = m.pop("version") ct_model.user_defined_metadata.update({k: str(v) for k, v in m.items()}) try: ct_model.save(str(f)) # save *.mlpackage except Exception as e: LOGGER.warning( f"{prefix} WARNING ⚠️ CoreML export to *.mlpackage failed ({e}), reverting to *.mlmodel export. " f"Known coremltools Python 3.11 and Windows bugs https://github.com/apple/coremltools/issues/1928." ) f = f.with_suffix(".mlmodel") ct_model.save(str(f)) return f, ct_model @try_export def export_engine(self, prefix=colorstr("TensorRT:")): """YOLOv8 TensorRT export https://developer.nvidia.com/tensorrt.""" assert self.im.device.type != "cpu", "export running on CPU but must be on GPU, i.e. use 'device=0'" # self.args.simplify = True f_onnx, _ = self.export_onnx() # run before TRT import https://github.com/ultralytics/ultralytics/issues/7016 try: import tensorrt as trt # noqa except ImportError: if LINUX: check_requirements("tensorrt>7.0.0,<=10.1.0") import tensorrt as trt # noqa check_version(trt.__version__, ">=7.0.0", hard=True) check_version(trt.__version__, "<=10.1.0", msg="https://github.com/ultralytics/ultralytics/pull/14239") # Setup and checks LOGGER.info(f"\n{prefix} starting export with TensorRT {trt.__version__}...") is_trt10 = int(trt.__version__.split(".")[0]) >= 10 # is TensorRT >= 10 assert Path(f_onnx).exists(), f"failed to export ONNX file: {f_onnx}" f = self.file.with_suffix(".engine") # TensorRT engine file logger = trt.Logger(trt.Logger.INFO) if self.args.verbose: logger.min_severity = trt.Logger.Severity.VERBOSE # Engine builder builder = trt.Builder(logger) config = builder.create_builder_config() workspace = int(self.args.workspace * (1 << 30)) if is_trt10: config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace) else: # TensorRT versions 7, 8 config.max_workspace_size = workspace flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) network = builder.create_network(flag) half = builder.platform_has_fast_fp16 and self.args.half int8 = builder.platform_has_fast_int8 and self.args.int8 # Read ONNX file parser = trt.OnnxParser(network, logger) if not parser.parse_from_file(f_onnx): raise RuntimeError(f"failed to load ONNX file: {f_onnx}") # Network inputs inputs = [network.get_input(i) for i in range(network.num_inputs)] outputs = [network.get_output(i) for i in range(network.num_outputs)] for inp in inputs: LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}') for out in outputs: LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}') if self.args.dynamic: shape = self.im.shape if shape[0] <= 1: LOGGER.warning(f"{prefix} WARNING ⚠️ 'dynamic=True' model requires max batch size, i.e. 'batch=16'") profile = builder.create_optimization_profile() min_shape = (1, shape[1], 32, 32) # minimum input shape max_shape = (*shape[:2], *(max(1, self.args.workspace) * d for d in shape[2:])) # max input shape for inp in inputs: profile.set_shape(inp.name, min=min_shape, opt=shape, max=max_shape) config.add_optimization_profile(profile) LOGGER.info(f"{prefix} building {'INT8' if int8 else 'FP' + ('16' if half else '32')} engine as {f}") if int8: config.set_flag(trt.BuilderFlag.INT8) config.set_calibration_profile(profile) config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED class EngineCalibrator(trt.IInt8Calibrator): def __init__( self, dataset, # ultralytics.data.build.InfiniteDataLoader batch: int, cache: str = "", ) -> None: trt.IInt8Calibrator.__init__(self) self.dataset = dataset self.data_iter = iter(dataset) self.algo = trt.CalibrationAlgoType.ENTROPY_CALIBRATION_2 self.batch = batch self.cache = Path(cache) def get_algorithm(self) -> trt.CalibrationAlgoType: """Get the calibration algorithm to use.""" return self.algo def get_batch_size(self) -> int: """Get the batch size to use for calibration.""" return self.batch or 1 def get_batch(self, names) -> list: """Get the next batch to use for calibration, as a list of device memory pointers.""" try: im0s = next(self.data_iter)["img"] / 255.0 im0s = im0s.to("cuda") if im0s.device.type == "cpu" else im0s return [int(im0s.data_ptr())] except StopIteration: # Return [] or None, signal to TensorRT there is no calibration data remaining return None def read_calibration_cache(self) -> bytes: """Use existing cache instead of calibrating again, otherwise, implicitly return None.""" if self.cache.exists() and self.cache.suffix == ".cache": return self.cache.read_bytes() def write_calibration_cache(self, cache) -> None: """Write calibration cache to disk.""" _ = self.cache.write_bytes(cache) # Load dataset w/ builder (for batching) and calibrate config.int8_calibrator = EngineCalibrator( dataset=self.get_int8_calibration_dataloader(prefix), batch=2 * self.args.batch, cache=str(self.file.with_suffix(".cache")), ) elif half: config.set_flag(trt.BuilderFlag.FP16) # Free CUDA memory del self.model gc.collect() torch.cuda.empty_cache() # Write file build = builder.build_serialized_network if is_trt10 else builder.build_engine with build(network, config) as engine, open(f, "wb") as t: # Metadata meta = json.dumps(self.metadata) t.write(len(meta).to_bytes(4, byteorder="little", signed=True)) t.write(meta.encode()) # Model t.write(engine if is_trt10 else engine.serialize()) return f, None @try_export def export_saved_model(self, prefix=colorstr("TensorFlow SavedModel:")): """YOLOv8 TensorFlow SavedModel export.""" cuda = torch.cuda.is_available() try: import tensorflow as tf # noqa except ImportError: suffix = "-macos" if MACOS else "-aarch64" if ARM64 else "" if cuda else "-cpu" version = ">=2.0.0" check_requirements(f"tensorflow{suffix}{version}") import tensorflow as tf # noqa check_requirements( ( "keras", # required by 'onnx2tf' package "tf_keras", # required by 'onnx2tf' package "sng4onnx>=1.0.1", # required by 'onnx2tf' package "onnx_graphsurgeon>=0.3.26", # required by 'onnx2tf' package "onnx>=1.12.0", "onnx2tf>1.17.5,<=1.22.3", "onnxslim>=0.1.31", "tflite_support<=0.4.3" if IS_JETSON else "tflite_support", # fix ImportError 'GLIBCXX_3.4.29' "flatbuffers>=23.5.26,<100", # update old 'flatbuffers' included inside tensorflow package "onnxruntime-gpu" if cuda else "onnxruntime", ), cmds="--extra-index-url https://pypi.ngc.nvidia.com", # onnx_graphsurgeon only on NVIDIA ) LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...") check_version( tf.__version__, ">=2.0.0", name="tensorflow", verbose=True, msg="https://github.com/ultralytics/ultralytics/issues/5161", ) import onnx2tf f = Path(str(self.file).replace(self.file.suffix, "_saved_model")) if f.is_dir(): shutil.rmtree(f) # delete output folder # Pre-download calibration file to fix https://github.com/PINTO0309/onnx2tf/issues/545 onnx2tf_file = Path("calibration_image_sample_data_20x128x128x3_float32.npy") if not onnx2tf_file.exists(): attempt_download_asset(f"{onnx2tf_file}.zip", unzip=True, delete=True) # Export to ONNX self.args.simplify = True f_onnx, _ = self.export_onnx() # Export to TF np_data = None if self.args.int8: tmp_file = f / "tmp_tflite_int8_calibration_images.npy" # int8 calibration images file verbosity = "info" if self.args.data: f.mkdir() images = [batch["img"].permute(0, 2, 3, 1) for batch in self.get_int8_calibration_dataloader(prefix)] images = torch.cat(images, 0).float() # mean = images.view(-1, 3).mean(0) # imagenet mean [123.675, 116.28, 103.53] # std = images.view(-1, 3).std(0) # imagenet std [58.395, 57.12, 57.375] np.save(str(tmp_file), images.numpy().astype(np.float32)) # BHWC np_data = [["images", tmp_file, [[[[0, 0, 0]]]], [[[[255, 255, 255]]]]]] else: verbosity = "error" LOGGER.info(f"{prefix} starting TFLite export with onnx2tf {onnx2tf.__version__}...") onnx2tf.convert( input_onnx_file_path=f_onnx, output_folder_path=str(f), not_use_onnxsim=True, verbosity=verbosity, output_integer_quantized_tflite=self.args.int8, quant_type="per-tensor", # "per-tensor" (faster) or "per-channel" (slower but more accurate) custom_input_op_name_np_data_path=np_data, disable_group_convolution=True, # for end-to-end model compatibility enable_batchmatmul_unfold=True, # for end-to-end model compatibility ) yaml_save(f / "metadata.yaml", self.metadata) # add metadata.yaml # Remove/rename TFLite models if self.args.int8: tmp_file.unlink(missing_ok=True) for file in f.rglob("*_dynamic_range_quant.tflite"): file.rename(file.with_name(file.stem.replace("_dynamic_range_quant", "_int8") + file.suffix)) for file in f.rglob("*_integer_quant_with_int16_act.tflite"): file.unlink() # delete extra fp16 activation TFLite files # Add TFLite metadata for file in f.rglob("*.tflite"): f.unlink() if "quant_with_int16_act.tflite" in str(f) else self._add_tflite_metadata(file) return str(f), tf.saved_model.load(f, tags=None, options=None) # load saved_model as Keras model @try_export def export_pb(self, keras_model, prefix=colorstr("TensorFlow GraphDef:")): """YOLOv8 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow.""" import tensorflow as tf # noqa from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 # noqa LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...") f = self.file.with_suffix(".pb") m = tf.function(lambda x: keras_model(x)) # full model m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)) frozen_func = convert_variables_to_constants_v2(m) frozen_func.graph.as_graph_def() tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False) return f, None @try_export def export_tflite(self, keras_model, nms, agnostic_nms, prefix=colorstr("TensorFlow Lite:")): """YOLOv8 TensorFlow Lite export.""" # BUG https://github.com/ultralytics/ultralytics/issues/13436 import tensorflow as tf # noqa LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...") saved_model = Path(str(self.file).replace(self.file.suffix, "_saved_model")) if self.args.int8: f = saved_model / f"{self.file.stem}_int8.tflite" # fp32 in/out elif self.args.half: f = saved_model / f"{self.file.stem}_float16.tflite" # fp32 in/out else: f = saved_model / f"{self.file.stem}_float32.tflite" return str(f), None @try_export def export_edgetpu(self, tflite_model="", prefix=colorstr("Edge TPU:")): """YOLOv8 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/.""" LOGGER.warning(f"{prefix} WARNING ⚠️ Edge TPU known bug https://github.com/ultralytics/ultralytics/issues/1185") cmd = "edgetpu_compiler --version" help_url = "https://coral.ai/docs/edgetpu/compiler/" assert LINUX, f"export only supported on Linux. See {help_url}" if subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, shell=True).returncode != 0: LOGGER.info(f"\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}") sudo = subprocess.run("sudo --version >/dev/null", shell=True).returncode == 0 # sudo installed on system for c in ( "curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -", 'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | ' "sudo tee /etc/apt/sources.list.d/coral-edgetpu.list", "sudo apt-get update", "sudo apt-get install edgetpu-compiler", ): subprocess.run(c if sudo else c.replace("sudo ", ""), shell=True, check=True) ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1] LOGGER.info(f"\n{prefix} starting export with Edge TPU compiler {ver}...") f = str(tflite_model).replace(".tflite", "_edgetpu.tflite") # Edge TPU model cmd = f'edgetpu_compiler -s -d -k 10 --out_dir "{Path(f).parent}" "{tflite_model}"' LOGGER.info(f"{prefix} running '{cmd}'") subprocess.run(cmd, shell=True) self._add_tflite_metadata(f) return f, None @try_export def export_tfjs(self, prefix=colorstr("TensorFlow.js:")): """YOLOv8 TensorFlow.js export.""" check_requirements("tensorflowjs") if ARM64: # Fix error: `np.object` was a deprecated alias for the builtin `object` when exporting to TF.js on ARM64 check_requirements("numpy==1.23.5") import tensorflow as tf import tensorflowjs as tfjs # noqa LOGGER.info(f"\n{prefix} starting export with tensorflowjs {tfjs.__version__}...") f = str(self.file).replace(self.file.suffix, "_web_model") # js dir f_pb = str(self.file.with_suffix(".pb")) # *.pb path gd = tf.Graph().as_graph_def() # TF GraphDef with open(f_pb, "rb") as file: gd.ParseFromString(file.read()) outputs = ",".join(gd_outputs(gd)) LOGGER.info(f"\n{prefix} output node names: {outputs}") quantization = "--quantize_float16" if self.args.half else "--quantize_uint8" if self.args.int8 else "" with spaces_in_path(f_pb) as fpb_, spaces_in_path(f) as f_: # exporter can not handle spaces in path cmd = ( "tensorflowjs_converter " f'--input_format=tf_frozen_model {quantization} --output_node_names={outputs} "{fpb_}" "{f_}"' ) LOGGER.info(f"{prefix} running '{cmd}'") subprocess.run(cmd, shell=True) if " " in f: LOGGER.warning(f"{prefix} WARNING ⚠️ your model may not work correctly with spaces in path '{f}'.") # f_json = Path(f) / 'model.json' # *.json path # with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order # subst = re.sub( # r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, ' # r'"Identity.?.?": {"name": "Identity.?.?"}, ' # r'"Identity.?.?": {"name": "Identity.?.?"}, ' # r'"Identity.?.?": {"name": "Identity.?.?"}}}', # r'{"outputs": {"Identity": {"name": "Identity"}, ' # r'"Identity_1": {"name": "Identity_1"}, ' # r'"Identity_2": {"name": "Identity_2"}, ' # r'"Identity_3": {"name": "Identity_3"}}}', # f_json.read_text(), # ) # j.write(subst) yaml_save(Path(f) / "metadata.yaml", self.metadata) # add metadata.yaml return f, None def _add_tflite_metadata(self, file): """Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata.""" import flatbuffers try: # TFLite Support bug https://github.com/tensorflow/tflite-support/issues/954#issuecomment-2108570845 from tensorflow_lite_support.metadata import metadata_schema_py_generated as schema # noqa from tensorflow_lite_support.metadata.python import metadata # noqa except ImportError: # ARM64 systems may not have the 'tensorflow_lite_support' package available from tflite_support import metadata # noqa from tflite_support import metadata_schema_py_generated as schema # noqa # Create model info model_meta = schema.ModelMetadataT() model_meta.name = self.metadata["description"] model_meta.version = self.metadata["version"] model_meta.author = self.metadata["author"] model_meta.license = self.metadata["license"] # Label file tmp_file = Path(file).parent / "temp_meta.txt" with open(tmp_file, "w") as f: f.write(str(self.metadata)) label_file = schema.AssociatedFileT() label_file.name = tmp_file.name label_file.type = schema.AssociatedFileType.TENSOR_AXIS_LABELS # Create input info input_meta = schema.TensorMetadataT() input_meta.name = "image" input_meta.description = "Input image to be detected." input_meta.content = schema.ContentT() input_meta.content.contentProperties = schema.ImagePropertiesT() input_meta.content.contentProperties.colorSpace = schema.ColorSpaceType.RGB input_meta.content.contentPropertiesType = schema.ContentProperties.ImageProperties # Create output info output1 = schema.TensorMetadataT() output1.name = "output" output1.description = "Coordinates of detected objects, class labels, and confidence score" output1.associatedFiles = [label_file] if self.model.task == "segment": output2 = schema.TensorMetadataT() output2.name = "output" output2.description = "Mask protos" output2.associatedFiles = [label_file] # Create subgraph info subgraph = schema.SubGraphMetadataT() subgraph.inputTensorMetadata = [input_meta] subgraph.outputTensorMetadata = [output1, output2] if self.model.task == "segment" else [output1] model_meta.subgraphMetadata = [subgraph] b = flatbuffers.Builder(0) b.Finish(model_meta.Pack(b), metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER) metadata_buf = b.Output() populator = metadata.MetadataPopulator.with_model_file(str(file)) populator.load_metadata_buffer(metadata_buf) populator.load_associated_files([str(tmp_file)]) populator.populate() tmp_file.unlink() def _pipeline_coreml(self, model, weights_dir=None, prefix=colorstr("CoreML Pipeline:")): """YOLOv8 CoreML pipeline.""" import coremltools as ct # noqa LOGGER.info(f"{prefix} starting pipeline with coremltools {ct.__version__}...") _, _, h, w = list(self.im.shape) # BCHW # Output shapes spec = model.get_spec() out0, out1 = iter(spec.description.output) if MACOS: from PIL import Image img = Image.new("RGB", (w, h)) # w=192, h=320 out = model.predict({"image": img}) out0_shape = out[out0.name].shape # (3780, 80) out1_shape = out[out1.name].shape # (3780, 4) else: # linux and windows can not run model.predict(), get sizes from PyTorch model output y out0_shape = self.output_shape[2], self.output_shape[1] - 4 # (3780, 80) out1_shape = self.output_shape[2], 4 # (3780, 4) # Checks names = self.metadata["names"] nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height _, nc = out0_shape # number of anchors, number of classes # _, nc = out0.type.multiArrayType.shape assert len(names) == nc, f"{len(names)} names found for nc={nc}" # check # Define output shapes (missing) out0.type.multiArrayType.shape[:] = out0_shape # (3780, 80) out1.type.multiArrayType.shape[:] = out1_shape # (3780, 4) # spec.neuralNetwork.preprocessing[0].featureName = '0' # Flexible input shapes # from coremltools.models.neural_network import flexible_shape_utils # s = [] # shapes # s.append(flexible_shape_utils.NeuralNetworkImageSize(320, 192)) # s.append(flexible_shape_utils.NeuralNetworkImageSize(640, 384)) # (height, width) # flexible_shape_utils.add_enumerated_image_sizes(spec, feature_name='image', sizes=s) # r = flexible_shape_utils.NeuralNetworkImageSizeRange() # shape ranges # r.add_height_range((192, 640)) # r.add_width_range((192, 640)) # flexible_shape_utils.update_image_size_range(spec, feature_name='image', size_range=r) # Print # print(spec.description) # Model from spec model = ct.models.MLModel(spec, weights_dir=weights_dir) # 3. Create NMS protobuf nms_spec = ct.proto.Model_pb2.Model() nms_spec.specificationVersion = 5 for i in range(2): decoder_output = model._spec.description.output[i].SerializeToString() nms_spec.description.input.add() nms_spec.description.input[i].ParseFromString(decoder_output) nms_spec.description.output.add() nms_spec.description.output[i].ParseFromString(decoder_output) nms_spec.description.output[0].name = "confidence" nms_spec.description.output[1].name = "coordinates" output_sizes = [nc, 4] for i in range(2): ma_type = nms_spec.description.output[i].type.multiArrayType ma_type.shapeRange.sizeRanges.add() ma_type.shapeRange.sizeRanges[0].lowerBound = 0 ma_type.shapeRange.sizeRanges[0].upperBound = -1 ma_type.shapeRange.sizeRanges.add() ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i] ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i] del ma_type.shape[:] nms = nms_spec.nonMaximumSuppression nms.confidenceInputFeatureName = out0.name # 1x507x80 nms.coordinatesInputFeatureName = out1.name # 1x507x4 nms.confidenceOutputFeatureName = "confidence" nms.coordinatesOutputFeatureName = "coordinates" nms.iouThresholdInputFeatureName = "iouThreshold" nms.confidenceThresholdInputFeatureName = "confidenceThreshold" nms.iouThreshold = 0.45 nms.confidenceThreshold = 0.25 nms.pickTop.perClass = True nms.stringClassLabels.vector.extend(names.values()) nms_model = ct.models.MLModel(nms_spec) # 4. Pipeline models together pipeline = ct.models.pipeline.Pipeline( input_features=[ ("image", ct.models.datatypes.Array(3, ny, nx)), ("iouThreshold", ct.models.datatypes.Double()), ("confidenceThreshold", ct.models.datatypes.Double()), ], output_features=["confidence", "coordinates"], ) pipeline.add_model(model) pipeline.add_model(nms_model) # Correct datatypes pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString()) pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString()) pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString()) # Update metadata pipeline.spec.specificationVersion = 5 pipeline.spec.description.metadata.userDefined.update( {"IoU threshold": str(nms.iouThreshold), "Confidence threshold": str(nms.confidenceThreshold)} ) # Save the model model = ct.models.MLModel(pipeline.spec, weights_dir=weights_dir) model.input_description["image"] = "Input image" model.input_description["iouThreshold"] = f"(optional) IoU threshold override (default: {nms.iouThreshold})" model.input_description["confidenceThreshold"] = ( f"(optional) Confidence threshold override (default: {nms.confidenceThreshold})" ) model.output_description["confidence"] = 'Boxes × Class confidence (see user-defined metadata "classes")' model.output_description["coordinates"] = "Boxes × [x, y, width, height] (relative to image size)" LOGGER.info(f"{prefix} pipeline success") return model def add_callback(self, event: str, callback): """Appends the given callback.""" self.callbacks[event].append(callback) def run_callbacks(self, event: str): """Execute all callbacks for a given event.""" for callback in self.callbacks.get(event, []): callback(self) class IOSDetectModel(torch.nn.Module): """Wrap an Ultralytics YOLO model for Apple iOS CoreML export.""" def __init__(self, model, im): """Initialize the IOSDetectModel class with a YOLO model and example image.""" super().__init__() _, _, h, w = im.shape # batch, channel, height, width self.model = model self.nc = len(model.names) # number of classes if w == h: self.normalize = 1.0 / w # scalar else: self.normalize = torch.tensor([1.0 / w, 1.0 / h, 1.0 / w, 1.0 / h]) # broadcast (slower, smaller) def forward(self, x): """Normalize predictions of object detection model with input size-dependent factors.""" xywh, cls = self.model(x)[0].transpose(0, 1).split((4, self.nc), 1) return cls, xywh * self.normalize # confidence (3780, 80), coordinates (3780, 4)